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Abstract

We show here how to relate the area of a parallelogram in the usual manner
to how it can be represented in geometric algebra.

Our basic goal here is to represent the area of a parallelogram in geometric
algebra, connecting it up with its standard presentation in geometry.

Figure 1. We have here a typical parallelogram.

In Fig. 1 we see a parallelogram whose area we know from high school math
to be

Area Parallelogram = ab sin θ , (1)

where θ is the angle between sides a and b, and a and b are, respectively, the
lengths of sides a and b.

Let’s now place vectors on the sides of the parallelogram so that we can
represent its area with a bivector (which better than a cross product).

Figure 2. Written in bivector form, the area of the parallelogram
can be expressed as a ∧ b.

1



Now, let B be any nonzero bivector represented as the wedge product of any
two vectors (such as in Fig. 2). In geometric algebra, the magnitude of this
bivector is defined by

|B | = [⟨B†B⟩]1/2 , (2)

where ⟨· · · ⟩ = ⟨· · · ⟩0 means to take the scalar part of what’s between the brack-
ets. The symbol † is the reverse operator, which means to take the ordering of
the vectors in reverse order. This operation distributes over addition. Scalars
and vectors are invariant under the reverse operation. For clarification, with
the ai’s as vectors, we have the general relations:

(a1a2 · · · an)† = an · · · a2a1 ,
(a1 ∧ a2 ∧ · · · ∧ an)

† = an ∧ · · · ∧ a2 ∧ a1

(a1 ∧ a2)
† = −a1 ∧ a2 . (3)

Some additional background in geometric algebra may be of help. The geo-
metric product of two vectors a and b is given as

ab = a · b+ a ∧ b . (4)

Solving for the bivector part, we have

a ∧ b = ab− a · b . (5)

We also need to know that

a · b = 1
2 (ab+ ba) , (6)

and, of course, the familiar relation from vector algebra,

a · b = ab cos θ . (7)

Now, for any two multivectors A and B

⟨AB⟩† = ⟨B†A†⟩ . (8)

As a corollary, if A and B are both bivectors, then

⟨AB⟩† = ⟨(−B)(−A)⟩ = ⟨BA⟩ . (9)

My first task is to show that |B | is the area of the bivector parallelogram,
and is given as ab sin θ. For convenience, I’ll start with |B |2 where B = a ∧ b.

|B |2 = ⟨B†B⟩
= ⟨(a ∧ b)†a ∧ b⟩
= ⟨(ab− a · b)†(ab− a · b)⟩
= ⟨(ba− a · b)(ab− a · b)⟩
= ⟨baab− a · b(ba+ ab) + (a · b)2⟩
= ⟨a2b2 − 2(a · b)2 + (a · b)2⟩
= a2b2 − a2b2 cos2 θ

= a2b2 sin2 θ . (10)
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On taking square roots of both sides, this result agrees with what we knew from
(1). Now, a useful corollary: if A is a scalar or a vector, then

A† = A . (11)

My last task is to show that

|B | = |B · σ1 ∧ σ2 | , (12)

where σ1 and σ2 are unit vectors along the x- and y-axes, respectively.
Next follows some useful prerequisite results: Let A and B be any two

multivectors. If h is any multivector such that hh† = 1, then

AB = A(1)B = Ahh†B = (Ah)(h†B) , (13)

which comes from the fact that the geometric product is associative! (Yay!) In
particular, let h = σ1σ2, then hh† = 1. (Prove it! Hint: First, σ2

1 = σ2
2 = 1,

and, second, hh† = σ1σ2σ2σ1, and then employ associativity carefully and
remember that scalars commute with any multivector.) So,

AB = A(1)B = (Aσ1σ2)(σ2σ1B) . (14)

Now,

|B |2 = ⟨B†B⟩
= ⟨B†σ1σ2σ2σ1B⟩
= ⟨(B†σ1σ2)(σ2σ1B)⟩
= ⟨(B† · σ1 ∧ σ2)(σ2 ∧ σ1 ·B)⟩
= (B† · σ1 ∧ σ2)⟨(σ2 ∧ σ1 ·B)⟩
= (B† · σ1 ∧ σ2)⟨(σ2 ∧ σ1 ·B)⟩† from (11)

= (B† · σ1 ∧ σ2)
2 from (8)

= |B† · σ1 ∧ σ2 |2

= |B · σ1 ∧ σ2 |2 . (15)

We get (12) by taking square roots of both sides. QED

Additional note. The reader who is not familiar with geometric algebra and
wedge products, can reference on-line sources through the search string ‘wedge
product’. The main reference book is New Foundations for Classical Mechanics
by David Hestenes (Kluwer Academic Publishers). An online reference is

http://geocalc.clas.asu.edu/pdf-preAdobe8/PrimerGeometricAlgebra.pdf
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