## Determinant Form of Area of a Triangle

## P. Reany

## April 20, 2021

**Problem:** Show that the area of the triangle given in Fig. 1 has the determinant form (which I found in some textbook)

Area 
$$=\pm \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$
, (1)

where the  $\pm$  sign accounts for the two possible orientations of the bivector formed in the process. This formula is useful if one already has the coordinates of each of the three vertices.

**Note:** At the end of this article are some notes for those readers unfamiliar with geometric algebra.



Figure 1. We have arbitrarily labeled one side as vector  $\mathbf{a}$  and another as  $\mathbf{b}$ . (We only need assign two sides with vectors.) The only difference that will occur in the assignment of  $\mathbf{a}$  and  $\mathbf{b}$  will be an overall sign.

Actually, we are dealing here with two forms of area: a bivector form and a scalar form, such as in Eq. (1). The bivector form of the area is given (nonuniquely) below

Bivector Area 
$$\triangle = \frac{1}{2} \mathbf{a} \wedge \mathbf{b}$$
, (2)

which, in this case, assigns a positive orientation to the bivector.

To arrive at the scalar form of the area, let  $\sigma_1$  and  $\sigma_1$  be, unit vectors along the x- and y-axes, respectively. Then,

Scalar Area 
$$\Delta \equiv \frac{1}{2} \mathbf{a} \wedge \mathbf{b} \cdot \boldsymbol{\sigma}_1 \wedge \boldsymbol{\sigma}_2$$
. (3)

By convention, vectors  ${\bf a}$  and  ${\bf b}$  in coordinate form are given as

1

$$\mathbf{a} = (x_1 - x_2, y_1 - y_2), \mathbf{b} = (x_3 - x_2, y_3 - y_2).$$
(4)

Therefore,

Scalar Area 
$$\Delta = \frac{1}{2} \mathbf{a} \wedge \mathbf{b} \cdot \boldsymbol{\sigma}_1 \wedge \boldsymbol{\sigma}_2$$
  
 $= \frac{1}{2} \mathbf{a} \cdot [\mathbf{b} \cdot \boldsymbol{\sigma}_1 \wedge \boldsymbol{\sigma}_2]$   
 $= \frac{1}{2} \mathbf{a} \cdot [\mathbf{b} \cdot \boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2 - \mathbf{b} \cdot \boldsymbol{\sigma}_2 \boldsymbol{\sigma}_1]$   
 $= \frac{1}{2} [\mathbf{a} \cdot \boldsymbol{\sigma}_2 \mathbf{b} \cdot \boldsymbol{\sigma}_1 - \mathbf{b} \cdot \boldsymbol{\sigma}_2 \mathbf{a} \cdot \boldsymbol{\sigma}_1]$   
 $= \frac{1}{2} [(y_1 - y_2)(x_3 - x_2) - (y_3 - y_2)(x_1 - x_2)].$  (5)

On expanding this one more step, we get the same result that we get by expanding (1).

QED

By the way, if we had taken  $\frac{1}{2}\mathbf{b} \wedge \mathbf{a}$  as the bivector area, we would have gotten the negative value of the above result, hence, the  $\pm$  sign in Eq. (1).

*Point 1.* The reader who is not familiar with geometric algebra and wedge products, can reference on-line sources through the search string 'wedge product'. The main reference book is *New Foundations for Classical Mechanics* by David Hestenes (Kluwer Academic Publishers). An online reference is

http://geocalc.clas.asu.edu/pdf-preAdobe8/PrimerGeometricAlgebra.pdf

*Point 2.* The area of a triangle is typically computed by taking half the wedge product of any two sides.