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1 The Problem

It is well-known in plane geometry that the area of a rhombus can be calculated by taking half the
product of its diagonals. That is,

Area = 1
2d1d2 , (1)

as depicted in the following figure:

Figure 1. This is the problem as set up according to plane geometry. The lengths

of the diagonals of the rhombus are represented by the numbers d1 and d2.

Our task here is to prove this result using geometric algebra.

2 The Solution

Figure 2. We’ve constructed a parallelogram with all sides of equal lengths, i.e., a

rhombus. We will prove that the diagonals, which intersect at point P , interesect

each other at right angles. This result can also be proven vectorially by showing

that (a− b) · (a + b) = 0.
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Lemma: The diagonals of a rhombus intersect each other at right angles.

Proof: First, we note that the algebraic depiction of the claim that the sides of the rhombus have
equal lengths requires that

|a | = |b | , (2)

or, a = b. Now, to prove that the diagonals intersect in right angles, we have that

d1 · d2 = (a− b) · (a + b) = a2 + a · b− b · a− b2 = 0 . (3)

Hence, the two diagonals intersect each other at right angles.

Main Theorem: According to this theorem, the area A of a rhombus is given as

A = 1
2d1d2 . (4)

First Proof: In this proof we’ll work solely with areas represented by bivectors. In this case, the
area of the rhombus is simply

A = a ∧ b . (5)

On taking the absolute values of this, we get that

A = ab sin θ = a2 sin θ , (6)

where θ is the angle between the vectors a and b. So, can we arrive at (5) by using the vector
diagonals by taking 1

2d1 ∧ d2? Let’s see.

1
2d1 ∧ d2 = 1

2 (a + b) ∧ (a− b)

= 1
2 (−a ∧ b + b ∧ a)

= −a ∧ b . (7)

This is the correct result, ignoring the minus sign. The reason the minus sign appeared is be-
cause we have been careless in setting-up the wedge products. The bivector a ∧ b has positive
(counterclockwise) orientation, whereas the bivector d1 ∧ d2 has negative (clockwise) orientation.

Second Proof: This proof is similar to the last proof, but this time we’ll work only with the
geometric product. Since the inner product of d1 and d2 is zero, we may write

1
2d1 ∧ d2 = 1

2d1d2

= 1
2 (a + b)(a− b)

= 1
2 (a2 − ab + ba− b2)

= 1
2 (−ab + ba) (Why?)

= −a ∧ b , (8)

which is the same result as last time.

Third Proof: This time, we’ll work directly with the scalars d1 and d2, though it will be more
convenient to work with their squares. As before, let θ be the angle between vectors a and b, then
â · b̂ = cos θ, and

d21 = d2
1 = |a + b |2 = a2 + 2a · b + b2 = 2a2(1 + cos θ) ,

d22 = d2
2 = |a− b |2 = a2 − 2a · b + b2 = 2a2(1− cos θ) . (9)
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Therefore,
1
4d

2
1d

2
2 = a2(1 + cos θ) a2(1− cos θ) = a4(1− cos2 θ) = a4 sin2 θ . (10)

On taking the square root of this, we get

1
2d1d2 = a2 sin θ . (11)

But
A2 = |a ∧ b |2 = a2b2 sin2 θ = a4 sin2 θ , (12)

as we computed before. On taking the square root of this and comparing to (11), we have that

A = 1
2d1d2 . (13)
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