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1 The Problem

It is well-known in plane geometry that the area of a rhombus can be calculated by taking half the

product of its diagonals. That is,
Area = 1dids, (1)

as depicted in the following figure:

o

Figure 1. This is the problem as set up according to plane geometry. The lengths
of the diagonals of the rhombus are represented by the numbers d; and d.

Our task here is to prove this result using geometric algebra.

2 The Solution

Figure 2. We've constructed a parallelogram with all sides of equal lengths, i.e., a
rhombus. We will prove that the diagonals, which intersect at point P, interesect
each other at right angles. This result can also be proven vectorially by showing

that (a—b) - (a+b) = 0.



Lemma: The diagonals of a rhombus intersect each other at right angles.

Proof: First, we note that the algebraic depiction of the claim that the sides of the rhombus have
equal lengths requires that
lal=[b], (2)

or, a = b. Now, to prove that the diagonals intersect in right angles, we have that
dy-d;=(a—b)-(a+b)=a’+a-b—b-a-bt>=0. (3)

Hence, the two diagonals intersect each other at right angles.

Main Theorem: According to this theorem, the area A of a rhombus is given as

A=1Ldids. (4)

First Proof: In this proof we’ll work solely with areas represented by bivectors. In this case, the

area of the rhombus is simply
A=aAnb. (5)

On taking the absolute values of this, we get that
A = absind = a*sinf, (6)

where 6 is the angle between the vectors a and b. So, can we arrive at (5) by using the vector
diagonals by taking %dl Ads? Let’s see.
idiAdy=1L(a+b)A(a—D)
=21(-aAb+bAa)
=—aAb. (7)
This is the correct result, ignoring the minus sign. The reason the minus sign appeared is be-

cause we have been careless in setting-up the wedge products. The bivector a A b has positive
(counterclockwise) orientation, whereas the bivector d; A dz has negative (clockwise) orientation.

Second Proof: This proof is similar to the last proof, but this time we’ll work only with the
geometric product. Since the inner product of d; and ds is zero, we may write
%dl ANdy = %dldg
— L(a+b)(a—b)
= 1(a® —ab + ba—b?)
= %(—ab + ba) (Why?)
=—-aAb, (8)

which is the same result as last time.

Third Proof: This time, we’ll work directly with the scalars d; and ds, though it will be more
convenient to work with their squares. As before, let 6 be the angle between vectors a and b, then
a-b =cosf, and
d2=d3=]a+b|>=0a’>+2a-b+b* =2a*(1 + cosb),
d3=d5=]a—b|*=0a®>—2a-b+b*=2a*(1—cosb). (9)



Therefore,
1d}d3 = a*(1 + cosf) a*(1 — cosf) = a*(1 — cos® §) = a*sin® 0. (10)

On taking the square root of this, we get
Ld1dy = a%sind (11)
5 .

But
A% =|aAnb|* =d*sin® 0 = a*sin?0, (12)

as we computed before. On taking the square root of this and comparing to (11), we have that

A= Lldid,. (13)
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