Problem 1.6b on Page 47

P. Reany

May 22, 2021

1 Introduction

On page 47 of NFCM [1], we need to prove the following relation

$$\langle \mathbf{a} \wedge \mathbf{b} \mathbf{c} \wedge \mathbf{b} \rangle_2 = (\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}) \cdot \mathbf{b}.$$
 (1)

2 Solution

My approach will be to expand both so that they will meet in the middle.

$$(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}) \cdot \mathbf{b} = \mathbf{b} \cdot (\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})$$
$$= \mathbf{b} \cdot \mathbf{a} \mathbf{b} \wedge \mathbf{c} - \mathbf{b}^2 \mathbf{a} \wedge \mathbf{c} + \mathbf{b} \cdot \mathbf{c} \mathbf{a} \wedge \mathbf{b}.$$
(2)

Now,

$$\langle \mathbf{a} \wedge \mathbf{b} \mathbf{c} \wedge \mathbf{b} \rangle_2 = \langle (\mathbf{a} \mathbf{b} - \mathbf{a} \cdot \mathbf{b}) \mathbf{c} \wedge \mathbf{b} \rangle_2 = \langle (\mathbf{a} \mathbf{b}) \mathbf{c} \wedge \mathbf{b} \rangle_2 - \mathbf{a} \cdot \mathbf{b} \mathbf{c} \wedge \mathbf{b} = \langle \mathbf{a} (\mathbf{b} \mathbf{c} \wedge \mathbf{b}) \rangle_2 - \mathbf{a} \cdot \mathbf{b} \mathbf{c} \wedge \mathbf{b} = \langle \mathbf{a} (\mathbf{b} \cdot \mathbf{c} \wedge \mathbf{b}) \rangle_2 - \mathbf{a} \cdot \mathbf{b} \mathbf{c} \wedge \mathbf{b} = \langle \mathbf{a} (\mathbf{b} \cdot \mathbf{c} \mathbf{b} - \mathbf{c} \mathbf{b}^2) \rangle_2 - \mathbf{a} \cdot \mathbf{b} \mathbf{c} \wedge \mathbf{b} = \mathbf{b} \cdot \mathbf{c} \mathbf{a} \wedge \mathbf{b} - \mathbf{b}^2 \mathbf{a} \wedge \mathbf{c} - \mathbf{a} \cdot \mathbf{b} \mathbf{c} \wedge \mathbf{b} = \mathbf{b} \cdot \mathbf{c} \mathbf{a} \wedge \mathbf{b} - \mathbf{b}^2 \mathbf{a} \wedge \mathbf{c} - \mathbf{a} \cdot \mathbf{b} \mathbf{c} \wedge \mathbf{b}$$

$$(3)$$

Since this last result is the same as the last result of (2) then have demonstrated what we needed to show.

References

 D. Hestenes, New Foundations for Classical Mechanics, 2nd Ed., Kluwer Academic Publishers, 1999.