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1 The Problem

On page 118 of NFCM [1], we find problem (8.4):
The Legendre Polynomials Pn(xa) can be defined as the coefficients in the power series expansion
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The series converges for |x | < |a |.
Use a Taylor expansion to evaluate the polynomials of lowest order, namely:

P0(xa) = 1 ,

P1(xa) = a · x ,

P2(xa) = (a · x)2 − 1
2 |x ∧ a |2 ,

P3(xa) = (a · x)3 − 3
2 (a · x)|x ∧ a |2 .

The Pn(xa) are polynomials of vectors. Show that they are homogeneous functions of degree n in
the variable |x |, that is,

Pn(xa) = |x |nPn(x̂a) = |x |n|a |nPn(x̂â) . (1)

2 Lemmas (previously proved results)
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3 Solution to the first part

We begin by expanding
1
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in a Taylor series
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Setting n = 0, we get
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Solving for P0(xa) we get

P0(xa) = 1 . X (5)

Setting n = 1, we get

−a · ∇ 1

|x |
=
−a · ∇|x |
|x |2

=
a · x̂
|x |2

=
a · x
|x |3

. (6)

Solving for P1(xa) we get

P1(xa) = a · x . X (7)

Setting n = 2, we get (using the previous result, Eq. (6))
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Solving for P2(xa) we get

P2(xa) = (a · x)2 − 1
2 |x ∧ a |2 . X (10)

Setting n = 3, we get (using the previous result, Eq. (8))
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Solving for P3(xa) we get

P3(xa) = (a · x)3 − 3
2 (a · x)|x ∧ a |2 . X (13)
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4 Proof to homogenous part

I will humbly attempt a solution to the question involving the homogeneity of Pn(xa) in the variable
|x | only. My proof will be by induction on the degree of Pn(xa). The main idea of my proof is to
use the calculated expression for Pn(xa) to be the kernel of the calculation for Pn+1(xa) as well. In
fact, we used this technique above to calculate progressive values for Pn(xa).

Proof by induction: We begin by assuming that Pn(xa) is a homogeneous polynomial in the
variable |x | of degree n, and that

P ′
n(xa) ≡ (−a · ∇)Pn(xa) (14)

is a homogeneous polynomial in the variable |x | of degree n − 1. So, how did we move up the
polynomial chain? We first state the basics:
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Remember that the above equation defines the polynomials Pn(xa). Now, what happens when we
let n→ n + 1? We get
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By performing a couple identity operations, we get
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From this we get
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Now, since P ′
n(xa) is assumed to be of degree n− 1 in |x |, then P ′

n(xa)|x |2 is of degree n+ 1, and
so the first term on the RHS is of degree n + 1. Furthermore, since a · x̂ is of degree zero in |x |,
then the second term is of degree n + 1, as well. Hence, Pn+1(xa) is of degree n + 1 in |x |.
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