Problem 2.2 on Page 203

P. Reany

June 7, 2021

1 The Problem

On page 203 of NFCM [1], we find Problem (2.2): To relate the constants in the two different Equations (2.2) and (2.7) [of the text] for an ellipse (See Figure 2-6.14a, page 95):

a) Evaluate r at the points $\mathbf{x} = \pm \mathbf{a}$ to show that

$$\ell = a(1 - \epsilon^2); \tag{1}$$

- b) and that $a\epsilon = |\mathbf{a}| |\mathbf{\epsilon}|$ is the distance from the center of the ellipse to the foci;
- c) evaluate r at $\mathbf{x} = \mathbf{b}$ to show that

$$b^2 = (1 - \epsilon^2)a^2 = a\ell. (2)$$

Figure 1. This is the text's Figure 2-6.14a, page 95.

The equations referenced above are, first, Eq. (2.2):

$$r = \frac{\ell}{1 + \epsilon \cdot \hat{\mathbf{r}}} \,, \tag{3}$$

and, second, Eq. (2.7):

$$\mathbf{x} = \mathbf{a}\cos\phi + \mathbf{b}\sin\phi\,,\tag{4}$$

2 Solution

Part (a) Our plan is to set

$$2a = r_{\mathbf{a}} + r_{-\mathbf{a}} \,, \tag{5}$$

where $r_{\mathbf{a}}$ is the distance between the foci on the +x-axis (at point $a\epsilon$) and the point \mathbf{a} (where $\epsilon \cdot \hat{\mathbf{r}} = \epsilon$), and where $r_{-\mathbf{a}}$ is the distance between the foci on the +x-axis and the point $-\mathbf{a}$ (where $\epsilon \cdot \hat{\mathbf{r}} = -\epsilon$); hence, using (3), we get

$$2a = r_{\mathbf{a}} + r_{-\mathbf{a}} = \frac{\ell}{1+\epsilon} + \frac{\ell}{1-\epsilon} = \frac{2\ell}{1-\epsilon^2}.$$
 (6)

Solving this for ℓ , we get

$$\ell = a(1 - \epsilon^2). \tag{7}$$

Part (b) Define D as the distance from the origin to the foci on the +x-axis, then

$$D = a - r_{\mathbf{a}}$$

$$= a - \frac{\ell}{1 + \epsilon}$$

$$= a - \frac{a(1 - \epsilon^2)}{1 + \epsilon} \quad \text{(from (7))}$$

$$= a\epsilon. \tag{8}$$

Part (c)

Figure 2. This is the adjusted figure to help solve for b. The angle $\overline{\beta}$ is the angle between ϵ and $\hat{\mathbf{r}}$ when $\hat{\mathbf{r}}$ points to point \mathbf{b} ; hence, $\cos \overline{\beta} = -\cos \beta$. Vectors \mathbf{x} and \mathbf{r} are left in their generic positions.

Define $r_{\mathbf{a}}$ as the distance from the foci to the point **b** on the +y-axis, then

$$r_{\mathbf{a}} = \frac{\ell}{1 + \epsilon \cdot \hat{\mathbf{r}}}$$

$$= \frac{\ell}{1 + \epsilon \cos \overline{\beta}}$$

$$= \frac{\ell}{1 - \epsilon \cos \beta}.$$
(9)

But from Figure 2, we calculate that

$$\cos \beta = \frac{a\epsilon}{r_{\mathbf{b}}}.\tag{10}$$

On substituting this into (9), and solving for $r_{\mathbf{a}}$, we get

$$r_{\mathbf{b}} = a. (11)$$

We now have a relation obtained for b from the Pythagorean Theorem, namely

$$a^2 = b^2 + (a\epsilon)^2. (12)$$

On solving this for b^2 and using (7), we have that

$$b^{2} = a^{2} - a^{2} \epsilon^{2} = a^{2} (1 - \epsilon^{2}) = a\ell.$$
 (13)

References

[1] D. Hestenes, New Foundations for Classical Mechanics, 2nd Ed., Kluwer Academic Publishers, 1999.