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1 Introduction

These notes cover pages 252 to 261 of NFCM [1].

2 Linear Functions and Matrices: Adjoints and Inverses

We begin with the projection operator.

Pa(x) = a−1a · x . (1)

But since
a · x = 1

2 (ax+ xa) , (2)

then
Pa(x) =

1
2a

−1(ax+ xa) = 1
2 (x+ a−1xa) . (3)

Page 254.

The text says that for every linear function f that takes values in the range space and an arbitrary
vector y in the range space, there exists a linear function from the range space back to the domain
space such that the followng relation holds true:

f (y) · x = y · f(x) , (4)

where f is called the adjoint of f . Just looking at the LHS side of this last equation, it seems
obvious that f takes it values in the domain space because it’s dotting x which is a domain vector.
However, the implicit deinfition of a function does not guarantee its existence. But we can do that
by solving for f , from which we get that

f (y) = y · ∇xf(x) . (5)

To prove this, we just multiply through both sides of (4) by ∇x to get

∇xf (y) · x = ∇x(y · f(x)) . (6)

We’ll manipulate the left-hand side and right-hand side separately. In both cases we use the fact
that y is not a function of x. An indentity we’ll need is

∂ixj =
∂xj

∂xi
= δij . (7)
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Starting with the LHS:

∇xf (y) · x = ∇x[f (y)]jxj

= σi∂i[f (y)]jxj

= σiδij [f (y)]j

= σj [f (y)]j

= f (y) . (8)

Now for the right-hand side:

∇x(y · f(x)) = ∇x(σkyk · xjf(σj))

= ∇xykxj(σk · f(σj))

= σi∂iykxjfjk

= σiδijykfjk

= σjykfjk . (9)

And we’re halfway there.

y · ∇xf(x)) = yi∂i(xjf(σj))

= yiδijf(σj)

= yif(σi)

= yifjiσi

= σjykfjk . (10)

Hence,
f (y) = ∇xf (y) · x = ∇x(y · f(x)) = y · ∇xf(x)) . (11)
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Let f be a linear function from the domain of 3-vectors to the range or 3-vectors. We let f
be the extension of f to act linearly on all n-graded objects, from scalars to vector to bivectors to
pseudoscalars. In particular, for any three domain vectors, x, y, z,

f(x ∧ y ∧ z) ≡ f(x) ∧ f(y) ∧ f(z) . (12)

Generally,
f(x1 ∧ x2 ∧ · · · ∧ xk) ≡ f(x1) ∧ f(x2) ∧ · · · ∧ f(xk) . (13)

This preseravtion of the number of wedges of the domain being preserved in the range is called an
outermorphism. Since f(x)∧f(y)∧f(z) must be proportional to the original pseudoscalar x∧y∧z
then we can write

f(x ∧ y ∧ z) = (det f)x ∧ y ∧ z , (14)

where det f is the scalar function of proportionality. A canonical way to solve for f is this

f(i) = (det f) i , (15)

from which we get
det f = i−1 f(i) = i−1f (i) . (16)

The proof that f(i) = f (i) is given below.

2



Page 256.

We now have arrived at what I consider the main result of this section: The inverse of a linear
transformation.

Definiiton: If f is a linear transformation, then f is said to be singular if det f = 0, and nonsingular,
otherwise.

Main Result:

Assuming that f is a linear, nonsingular transformation, then

f−1(y) = f (yi)/f (i) =
f (yi)i−1

det f
, (17)

Proof:

Given: f is a linear, nonsingular transformation, such that

f(x) = y . (18)

Now, consider
xf (i) = xf (σ1 ∧ σ2 ∧ σ3) = x · f (σ1) ∧ f (σ2) ∧ f (σ3) , (19)

where we have used two simple facts. First, that x ∧ f (i) ≡ 0 and, second, that f is itself an
outermorphism. Continuing, we have that

xf (i) = x · f (σ1) f (σ2) ∧ f (σ3)− x · f (σ2) f (σ1) ∧ f (σ3) + x · f (σ3) f (σ1) ∧ f (σ2) . (20)

But we know that1

x · f (σk) = f(x) · σk = f(x) · σk . (21)

Hence, (20) becomes

xf (i) = f(x) · σ1 f (σ2) ∧ f (σ3)− f(x) · σ2 f (σ1) ∧ f (σ3) + f(x) · σ3 f (σ1) ∧ f (σ2) . (22)

Now we combine the wedge products:

xf (i) = f(x) · σ1 f (σ2 ∧ σ3)− f(x) · σ2 f (σ1 ∧ σ3) + f(x) · σ3 f (σ1 ∧ σ2) . (23)

Next, we replace the bivector arguments by their dual equivalents:

xf (i) = f(x) · σ1 f (iσ1) + f(x) · σ2 f (iσ2) + f(x) · σ3 f (iσ3) . (24)

Now we remember that f(x) · σk is a scalar and that f is linear:

xf (i) = f (f(x) · σ1 iσ1) + f (f(x) · σ2 iσ2) + f (f(x) · σ3 iσ3)

= f (f(x) · σ1 iσ1 + f(x) · σ2 iσ2) + f(x) · σ3 iσ3)

= f ([f(x) · σ1σ1 + f(x) · σ2σ2 + f(x) · σ3σ3]i)

= f (f(x)i) . (25)

Hence,

x =
f (yi)

f (i)
=

f (yi)

i det f
. (26)

1We proved that a linear function f from the range to the domain exists that satisfies the relation (4).
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From this we get

f−1(y) =
f (yi)i−1

det f
. (27)

Lemma 1:

Assuming that f is a linear transformation, then

f (i) = f(i) . (28)

Proof:

Given: f is a linear transformation, then

if (i) = σ1 ∧ σ2 ∧ σ3 · f (σ1) ∧ f (σ2) ∧ f (σ3)

=
...

= f(σ1) ∧ f(σ2) ∧ f(σ3) · σ1 ∧ σ2 ∧ σ3

= f(σ1 ∧ σ2 ∧ σ3) · σ1 ∧ σ2 ∧ σ3

= f(i) · i
= f(i)i . (29)

Hence
f (i) = f(i) . (30)

Page 257–9. (Einstein summation convention in effect where reasonable.)

fk = f(σk) = σjfjk = fk · σj σj . (31)

Or,
σjfjk = ⟨σjf(σk) ⟩ = ⟨σjfk ⟩ . (32)

Now,

σi · (gfσk) = σi · (g fjkσj)

= fjkσi · (g σj)

= fjkσi · (gℓjσℓ)

= gℓjfjk(σi · σℓ)

= gℓjfjkδiℓ

= gijfjk . (33)

4



Problem.

If f is a symmetric linear tranformation, what constraint does that place on f ?
Solution.

Given that f is a symmetric linear tranformation, then its matrix representation is

fkℓ = fℓk . (34)

This requires that
σk · fℓ = σℓ · fk , (35)

or
σk · f(σℓ) = σℓ · f(σk) . (36)

On converting the LHS to the adjoint equivalent,

f (σk) · σℓ = σℓ · f(σk) . (37)

Now we multiply through by σℓ and sum∑
f (σk) · σℓσℓ =

∑
σℓ · f(σk)σℓ . (38)

Simplifying, we get
f (σk) = f(σk) . (39)

♣
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