Problem 1.4 on Page 260

P. Reany

October 9, 2021

1 Problems

On page 260 of NFCM [1], we find Problem (1.4):

Prove that the following propositions about a linear function f on \mathcal{E}^3 are equivalent.

Notational note: $\mho = a$ logical contradiction.

- (a) f is nonsinglular.
- (b) $f(\mathbf{x}) = 0$ iff $\mathbf{x} = 0$.
- (c) To every vector \mathbf{y} there corresponds a unique vector \mathbf{x} such that $\mathbf{y} = f(\mathbf{x})$.

2 Solutions

Part 1): (a) \Rightarrow (b)

Given f is nonsinglular; hence $f(i) \neq 0$. Show that

Case 1)
$$f(\mathbf{x}) = 0 \implies \mathbf{x} = 0.$$

Case 2) $\mathbf{x} = 0 \implies f(\mathbf{x}) = 0.$

Case 1) We begin with the assumption that $f(\mathbf{x}) = 0$. Does this allow us to show that $\mathbf{x} = 0$? Yes. Let \mathbf{x} be given as

$$\mathbf{x} = x_1 \sigma_1 + x_2 \sigma_2 + x_3 \sigma_3 \,. \tag{1}$$

Then

$$0 = f(\mathbf{x}) = f(x_1\sigma_1 + x_2\sigma_2 + x_3\sigma_3) = x_1f(\sigma_1) + x_2f(\sigma_2) + x_3f(\sigma_3).$$
(2)

Wedging this through on the right by $(\sigma_2) \wedge f(\sigma_3)$, we get

$$0 = x_1 f(\sigma_1) \wedge f(\sigma_2) \wedge f(\sigma_3) = x_1 f(i).$$
(3)

But since $f(i) \neq 0$ then $x_1 = 0$. By similar reasoning, we can show that $x_2 = x_3 = 0$, which means that $\mathbf{x} = 0$.

Case 2) Given that $\mathbf{x} = 0$ show that $f(\mathbf{x}) = 0$. Let \mathbf{y} be an arbitrary vector in the range space. Then

$$\mathbf{x} \cdot \bar{f}(\mathbf{y}) = f(\mathbf{x}) \cdot \mathbf{y} = 0.$$
(4)

We'll prove this by contradiction. Assume that $f(\mathbf{x}) \neq 0$. Then call $f(\mathbf{x})$ as \mathbf{y}_1 . Since $f(\mathbf{x}) \cdot \mathbf{y} = 0$ must be true for arbitrary \mathbf{y} , we choose $\mathbf{y} = \mathbf{y}_1$. Then,

$$\mathbf{y}_1 \cdot \mathbf{y}_1 = 0. \quad \mho \tag{5}$$

Part 2): (b) \Rightarrow (c)

Given that $\mathbf{x} = 0$ iff $f(\mathbf{x}) = 0$, show that to every \mathbf{y} , an arbitrary vector in the range space, there corresponds a unique vector \mathbf{x} in the domain space such that $\mathbf{y} = f(\mathbf{x})$. In other words, show that f is a bijection, being 1-1 and onto.

First we'll show that f is 1-1. To do this, we need to show that whenever $f(\mathbf{x}_1) = f(\mathbf{x}_2)$ then $\mathbf{x}_1 = \mathbf{x}_2$. Therefore, assume that

$$f(\mathbf{x}_1) = f(\mathbf{x}_2) \,. \tag{6}$$

Then

$$f(\mathbf{x}_1) - f(\mathbf{x}_2) = 0.$$
 (7)

But f is linear, so

$$f(\mathbf{x}_1 - \mathbf{x}_2) = 0. \tag{8}$$

But by assumption $f(\mathbf{x}_1 - \mathbf{x}_2) = 0$ implies that $\mathbf{x}_1 - \mathbf{x}_2 = 0$. Therefore, $\mathbf{x}_1 = \mathbf{x}_2$ and we have shown that f is 1-1.

Now to show that f is onto. Our f has nullity zero, hence, by the Rank-Nullity Theorem the rank(f) is the same dimension as the base space, which has dimension 3. Therefore, f is onto.

Part 3): (c) \Rightarrow (a)

We are given that to every vector \mathbf{y} there corresponds a unique vector \mathbf{x} such that $\mathbf{y} = f(\mathbf{x})$. Show that therefore f is nonsingular, or that $f(i) \neq 0$. We have that

$$f(\sigma_1) = \mathbf{u}_1$$

$$f(\sigma_2) = \mathbf{u}_2$$

$$f(\sigma_3) = \mathbf{u}_3.$$
(9)

Therefore,

$$f(\sigma_1) \wedge f(\sigma_2) \wedge f(\sigma_3) = \mathbf{u}_1 \wedge \mathbf{u}_2 \wedge \mathbf{u}_3.$$
⁽¹⁰⁾

But, $f(\sigma_1) \wedge f(\sigma_2) \wedge f(\sigma_3) = \underline{f}(\sigma_1 \wedge \sigma_2 \wedge \sigma_3) = \underline{f}(i)$. So,

$$f(i) = \mathbf{u}_1 \wedge \mathbf{u}_2 \wedge \mathbf{u}_3 \,. \tag{11}$$

Now, $\mathbf{u}_1 \wedge \mathbf{u}_2 \wedge \mathbf{u}_3$ is zero iff these three vectors are linearly dependent. If they are not linearly independent, then, $\mathbf{u}_1 \wedge \mathbf{u}_2 \wedge \mathbf{u}_3 \neq 0$, and in this case $f(i) \neq 0$, and therefore, f is nonsinglular.

So, what does it mean for those vectors to be linearly dependent? It means that there exist three scalars α , β , and γ , not all zero, such that

$$\alpha \mathbf{u}_1 + \beta \mathbf{u}_2 + \gamma \mathbf{u}_3 = 0. \tag{12}$$

But if (12) is true, then so is

$$\alpha f(\sigma_1) + \beta f(\sigma_2) + \gamma f(\sigma_3) = 0, \qquad (13)$$

which can be rewritten as

$$f(\alpha\sigma_1 + \beta\sigma_2 + \gamma\sigma_3) = 0, \qquad (14)$$

But since 0 gets mapped by f to zero and that $\alpha \sigma_1 + \beta \sigma_2 + \gamma \sigma_3$ also gets mapped to zero, and that the domain vector \mathbf{x} is unique for every $\mathbf{y} = \mathbf{f}(\mathbf{x})$, then this implies that

$$\alpha \sigma_1 + \beta \sigma_2 + \gamma \sigma_3 = 0. \tag{15}$$

But the basis vectors cannot be linearly dependent. \mho

References

[1] D. Hestenes, New Foundations for Classical Mechanics, 2nd Ed., Kluwer Academic Publishers, 1999.