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1 Symmetric and Skew-symmetric Operators

These notes cover pages 263 to 275 of NFCM [1].

Maybe this following theorem should be placed in the previous section, but
here goes.

Theorem:

If f : X → Y is 1-1 and onto, then f : Y → X is also 1-1.

Proof:

Given f : X → Y is 1-1 means that if

f(x1) = f(x2) then x1 = x2 . (1)

Now, we need to show that if

f (y1) = f (y2) then y1 = y2 . (2)

We start by picking some nonzero x0 ∈ X and getting from the last equation

x0 · f (y1) = x0 · f (y2) . (3)

But we can flipflop this to get

f(x0) · y1 = f(x0) · y2 . (4)

From this we get that

f(x0) · y1 − f(x0) · y2 = 0 , (5)

and therefore
f(x0) · (y1 − y2) = 0 . (6)

However, this equation must be true for arbitrary nonzero x0. The first thing
we know is that f(x0) is not zero because f is 1-1 and only the zero vector of
X gets mapped to the zero vector of Y .
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Now, since f is onto, and x0 is arbitrary, if we assume that y1 − y2 ̸= 0, we
can always find an x0 that has a nonzero component of f(x0) along y1 − y2,
which would contradict the assumption of Eq. (6). Thus, we are forced to
conclude that y1 − y2 = 0, and from that, that y1 = y2. Done.

Let A be a skew-symmetric linear operator. Then we know that A satisfies
the equation

Aaj =
1
2 (Aaj −Aaj) . (7)

Dotting this by ak, we have that

ak · Aaj =
1
2 (ak · Aaj − ak · Aaj)

= 1
2 ((Aak) · aj − (Aak) · aj)

= − 1
2 ((Aak) · aj − (Aak) · aj)

= − 1
2 (aj · Aak − aj · Aak)

= −aj · Aak . (8)

If we define the matrix components of A as Ajk = σj · Aσk, then it’s easy to
show that

Ajk = −Akj . (9)

Now, it should be straightfoward to show that Ax can be represented as

Ax = x ·A (10)

for some bivector nozero A. If we can make this representaton, we should be
able to substitute (10) into the LHS of (8), in the form of Aaj = aj ·A, to get
the final RHS:

ak · Aaj = ak · (aj ·A)

= (ak ∧ aj) ·A)

= −(aj ∧ ak) ·A)

= −aj · (ak ·A)

= −aj · Aak . (11)

Eigenvectors and Eigenvalues

From (2.5), we have that
(f − λ)e = 0 (12)

shows that the operator (f − λ) is singular. This means that

det(f − λ) = 0 (13)
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So,
(f − λ)(i) = det(f − λ)i = 0 . (14)

Therefore,
(f − λ)σ1 ∧ (f − λ)σ2 ∧ (f − λ)σ3 = 0 , (15)

or
(f1 − λσ1) ∧ (f2 − λσ2) ∧ (f3 − λσ3) = 0 , (16)

where fk = fσk. Hence,

det(f − λ) = i−1(f1 − λσ1) ∧ (f2 − λσ2) ∧ (f3 − λσ3) = 0 , (17)

which is Eq. (2.6).
Now, we go back to Eq. (2.5) [Eq. (12)]. Let’s decompose e into components:

e =

3∑
k=1

e · σk σk =

3∑
k=1

ekσk , (18)

where
ek = e · σk . (19)

Then

(f − λ)

3∑
k=1

ekσk = 0 . (20)

Therefore,

(f − λ)

3∑
k=1

ekσk =

3∑
k=1

(fk − λσk)ek = 0 . (21)

Now, if we define
gk = fk − λσk , (22)

then (21) becomes
g1e1 + g2e2 + g3e3 = 0 . (23)

which is Eq. (2.8a) in the text.

Page 271.

An operator is said to be ‘positive’ if

x · (fx) > 0 for all x . (24)

Our job now is to prove that all the eigenvalues are positive. We’re going to
expand fx and assume that we have an orthonormal basis:

x · (fx) = x ·
[ 3∑
k=1

λk x · ek ek
]
> 0 . (25)

3



Now, let x = ej :

ej ·
[ 3∑
k=1

λk ej · ek ek
]
> 0 . (26)

From this we get that∑
k

δjkλk > 0 for all j = 1, 2, 3 , (27)

which simplifies to λj > 0 for all j = 1, 2, 3.

Let u be an arbitrary unitvector from the origin in E3. Let S be a symmetric
operator on E3. Then

Su = x (28)

is the set of points that S maps from the unit sphere to some ellipsoid. We
know that S has the form

Sx =

3∑
k=1

λk x · ek ek . (29)

we can derive an equation for the ellipsoid by the following trick.

u = S−1x =

3∑
k=1

1

λk
x · ek ek (30)

On dotting this last equation with itself, we get

1 = (S−1x) · (S−1x) . (31)

Clearly, the inverse of a symmetric transformation is also a symmetric transfor-
mation. Hence,

1 = (S−1x) · (S−1x) = x · S−1((S−1x)) = x · (S−2x) (32)

or
x · (S−2x) = 1 . (33)

Now we expand in a basis, assuming that the basis vectors are orthonormal.

3∑
j=1

xjej ·
[ 3∑
k=1

1

λ2
k

xkek
]
= 1 , (34)

or
3∑

j=1

xj

[ 3∑
k=1

1

λ2
k

xkδjk
]
= 1 , (35)
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from which we get Eq. (2.26) in the text:

x2
1

λ2
1

+
x2
2

λ2
2

+
x2
3

λ2
3

= 1 . (36)

Page 272-275: Eigenvalues in 2D: Mohr’s Algorithm.

I intend this subsection to be lengthy to fill-in the details and to make-up
for the difficulty of my own reading of the printed mathematics, especially the
subscripts, which seem to be washed out.

We begin with a positive symmetric operator S in 2D with eigenvalues and
eigenvectors:

Se± = λ±e± , (37)

where e± are principal vectors and λ± their respective eigenvalues.
Now, let u be a unit vector (u2 = 1) in the plane spanned by the two

principal vectors. Let’s project u onto the newly defined unit vector e ≡ ê+

u∥ = u · e e and thus u⊥ = u− u∥ = e e ∧ u . (38)

Therefore,

Su = S(u∥ + u⊥) = λ+u∥ + λ−u⊥

= λ+e e · u+ λ−e e ∧ u

= 1
2λ+(u+ eue) + 1

2λ−(u− eue) , (39)

where we used that

e · u = 1
2 (eu+ ue) , (40a)

e ∧ u = 1
2 (eu− ue) . (40b)

From this we get Eq. (2.28) of the text:

Su = 1
2 (λ+ + λ−)u+ 1

2 (λ+ − λ−)eue . (41)

Now, we’re going to deal quite a bit with the geometric product of the type
vi = v · i, where v is a vector in the i-plane. Hence v ∧ i ≡ 0 and

vi = −iv . (42)

A simple proof of this relies on the fact that vi is a vector:

vi = (vi)† = i†v† = −iv . (43)

Therefore, with e and u both in the i-plane,

ieuie = −eue . (44)
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So, now we arrive at the text’s Eq. (2.30) by replacing u by ui and multiplying
through by i on the left:

iS(ui) = 1
2 (λ+ + λ−)iui+

1
2 (λ+ − λ−)ieuie

= 1
2 (λ+ + λ−)u− 1

2 (λ+ − λ−)eue . (45)

From (41) and (45), we can define two new vectors

u+ = Su+ iS(ui) = (λ+ + λ−)u , (46a)

u− = Su− iS(ui) = (λ+ − λ−)eue , (46b)

which are the Eqs. (2.31a) and (2.31b) of the text.
Assuming that λ+ ≥ λ−, then,

|u± | = λ+ ± λ− . (47)

From this we can solve for the lambdas:

λ± = 1
2 (|u+ | ± |u− |) , (48)

which is Eq. (2.33c) in the text.
From (46b), we can define

û− ≡ eue , (49)

Then,
eû− = ue = eiϕ . (50)

which tells us that e is halfway between the vectors û− and u = û+. (Think of
e as along the diagonal of a rhombus whose sides are given by vectors û− and
û+.) Then,

e+ = α(û+ + û−) , (51)

which is Eq. (2.32) in the text. If û+ ∧ û− ̸= 0, then

e− = α(û+ − û−) (52)

(and e− is along the other diagonal of that rhombus). That e+ · e− = 0 can be
determined by direct computation. These are summarized in Eq. (2.33b).

Thus we can summarize Mohr’s Algorithm as the following steps:

1. Choose a convenient vector u in the i-plane.

2. Calculate u± from (46a) and (46b).

3. For û+ ∧ û− ̸= 0, e± = α(û+ ± û−) are principal vectors of S.

4. Then the principal values are given by λ± = 1
2 (|u+ |±|u− |), which comes

from (46a) and (46b) by taking absolute values.
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Now we skip to the example on page 274. We begin with the symmetric
operator:1

Su = aa ∧ u+ bb ∧ u . (53)

A quick path to a solution is to consider Sa, given by

Sa = aa ∧ a+ bb ∧ a = b · b ∧ a = b2a− bb · a . (54)

And, for a ∧ b = |a ∧ b |i,

iS(ai) = i[aa ∧ (ai) + bb ∧ (ai)] . (55)

Now, since ai is a vector, then a ∧ (ai) is a bivector, hence

a ∧ (ai) = ⟨a(ai) ⟩2 = ⟨ (aa)i ⟩2 = a2i = a2i . (56)

Similarly,
b ∧ (ai) = ⟨b(ai) ⟩2 = ⟨ (ba)i ⟩2 = b · a i . (57)

Then, on substituting these results into (55), we have

iS(ai) = i[aa2i+ bb · a i] = a3 + bb · a . (58)

On setting u in (46a) and in (46b) to â, and using the results of (54) and (58),
we get

a+ = [b2â− bb · â] + [a2â+ bb · â] = (a2 + b2)â , (59a)

a− = [b2â− bb · â]− [a2â+ bb · â] = (b2 − a2)â− 2bb · â , (59b)

which are the results at the bottom of page 274.
From this we easily get that

|a+ | = a2 + b2 . (60)

But deriving |a− | is a little trickier.

|a− |2 = [(b2 − a2)â− 2bb · â] · [(b2 − a2)â− 2bb · â]
= (b2 − a2)2 − 4(b2 − a2)(b · â)2 + 4b2(b · â)2

= (b2 − a2)2 + 4(b · a)2 . (61a)

Obviously, then
|a− | = [ (b2 − a2)2 + 4(a · b)2 ]1/2 , (62)

which gives us the equation at the top of page 275. Using (48), we get

λ± = 1
2

(
a2 + b2 ± [ (b2 − a2)2 + 4(a · b)2 ]1/2

)
, (63)

which is Eq. (2.39) of the text, though I get with it an overall factor of 1/2.

1This can be proved symmetric by showng that v · Su = u · Sv.
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Now to calculate the principal vectors. From (51) and (52), we get, respec-
tively,

e+ = α(â+ + â−) , (64a)

e− = α(â+ − â−) . (64b)

Thus,

e± = α(â+ ± â−) = α
[
â± (b2 − a2)â− 2bb · â

[ (b2 − a2)2 + 4(a · b)2 ]1/2
]
. (65)

However, we are free to scale this as we please, so we’ll set α = a, to get

e± = a± (b2 − a2)a− 2bb · a
[ (b2 − a2)2 + 4(a · b)2 ]1/2

. (66)
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