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1 Symmetric and Skew-symmetric Operators

These notes cover pages 263 to 275 of NFCM [1].
Maybe this following theorem should be placed in the previous section, but
here goes.
Theorem:
If f: X - Y is 1-1 and onto, then f : Y — X is also 1-1.
Proof:
Given f: X — Y is 1-1 means that if

f(x1) = f(x2) then x3=x2. (1)

Now, we need to show that if

f(y1)=f(y2) then y1=y>. (2)
We start by picking some nonzero xy € X and getting from the last equation
xo - f(y1) =xo- f(y2). (3)
But we can flipflop this to get
f(x0) - y1=f(x0) - y2. (4)
From this we get that
fx0) - y1— f(x0) - y2 =0, (5)
and therefore
f(x0) - (y1 —y2) =0. (6)

However, this equation must be true for arbitrary nonzero xg. The first thing
we know is that f(xg) is not zero because f is 1-1 and only the zero vector of
X gets mapped to the zero vector of Y.



Now, since [ is onto, and xq is arbitrary, if we assume that y; —ys # 0, we
can always find an x that has a nonzero component of f(xg) along y; — ys,
which would contradict the assumption of Eq. (6). Thus, we are forced to
conclude that y; — y2 = 0, and from that, that y; = ys. Done.

Let A be a skew-symmetric linear operator. Then we know that A satisfies
the equation

Aaj = 3(Aa; — Aay). (7)
Dotting this by aj, we have that

ag -Aaj =

NI= N

(ay - Aa; — ay, - Aa;)

((Aap) -a; — (Aay) - a;)

—3((Aax) -a; — (Aay) - a))

= —1(a; - Aay, —a; - Aay)

= —a; - Aa. (8)

If we define the matrix components of A as A;; = o; - Aoy, then it’s easy to
show that

Ajr, = —Apj . (9)
Now, it should be straightfoward to show that Ax can be represented as
Ax =x- A (10)

for some bivector nozero A. If we can make this representaton, we should be
able to substitute (10) into the LHS of (8), in the form of Aa; = a; - A, to get
the final RHS:

a,-Aa; =a; - (a; - A)

= (ax Aaj)-A)
= —(ajNag)-A)
=—a; (ay-A)
= —a; - Aay. (11)
Eigenvectors and Eigenvalues
From (2.5), we have that
(f=Ne=0 (12)

shows that the operator (f — A) is singular. This means that

det(f —A) =0 (13)



So,

(f=N)(i) =det(f —N)i=0. (14)
Therefore,
(f=Nar A (f=No2 A(f =A)o3 =0, (15)
or
(fl—)\0'1)/\(f2—)\0'2)/\<f3—)\0’3):0, (16)
where f;, = fo,. Hence,
det(f — )\) = i_l(fl - )\0’1) A (fg — )\0’2) A\ (fg — )\0‘3) =0, (17)

which is Eq. (2.6).
Now, we go back to Eq. (2.5) [Eq. (12)]. Let’s decompose e into components:

3 3
e:Ze~akak:Zekak, (18)
k=1 k=1
where
€ =€ 0L . (19)
Then
3
(f =2 eror=0. (20)
k=1
Therefore,
3 3
(f—)\)Zekak :Z(fk_)\o'k>ek =0. (21)
k=1 k=1
Now, if we define
gr = fr — Aoy, (22)
then (21) becomes
gie1 + g2ez +83e3 =0. (23)

which is Eq. (2.8a) in the text.

Page 271.
An operator is said to be ‘positive’ if
x-(fx)>0 forallx. (24)

Our job now is to prove that all the eigenvalues are positive. We're going to
expand fx and assume that we have an orthonormal basis:

3
X~(fX)ZX~[Z>\kX~ekek}>0. (25)

k=1



Now, let x = e;:
3
[Z/\kej-ekek] >0. (26)
From this we get that

> Gpde >0 forall j=1,2,3, (27)
k

which simplifies to A; > 0 for all j =1,2,3.
Let u be an arbitrary unitvector from the origin in E3. Let S be a symmetric

operator on E3. Then
Su=x (28)

is the set of points that S maps from the unit sphere to some ellipsoid. We
know that S has the form

3
Sx:ZAkx-ekek. (29)
k=1

we can derive an equation for the ellipsoid by the following trick.

3
= Z x ey eL (30)

On dotting this last equation with itself, we get
1=(8"'%)- (8 'x). (31)

Clearly, the inverse of a symmetric transformation is also a symmetric transfor-
mation. Hence,

=8 '%) - (S7x) =x-S (8§ 'x)) =x- (8 *x) (32)

or

x-(8%x)=1. (33)

Now we expand in a basis, assuming that the basis vectors are orthonormal.

3 3 1
ijej . [Z /\le'kek} =1, (34)
j=1 k=1"F
or

3 3 1
dowi[ Y szmeon] =1, (35)

j=1 k=1

3‘!\)



from which we get Eq. (2.26) in the text:
2 2 2

Ty Lo T3
% 08 g 36
xtuta (36)

Page 272-275: Eigenvalues in 2D: Mohr’s Algorithm.

I intend this subsection to be lengthy to fill-in the details and to make-up
for the difficulty of my own reading of the printed mathematics, especially the
subscripts, which seem to be washed out.

We begin with a positive symmetric operator S in 2D with eigenvalues and

eigenvectors:
Sei = )\iei 5 (37)

where ey are principal vectors and A4 their respective eigenvalues.
Now, let u be a unit vector (u?> = 1) in the plane spanned by the two
principal vectors. Let’s project u onto the newly defined unit vector e = é

uy=u-ee andthus u; =u—u;=eeAu. (38)
Therefore,

Su=8(u +ur)=Au +A uyL
=)Ajee-u+A_eeAu

=3A (u+eue)+ 1A (u-—eue), (39)

where we used that
e-u=;(eu+ue), (40a)
eAu=;(eu—ue). (40b)

From this we get Eq. (2.28) of the text:
Su= (A4 + A )u+ (A — A\)eue. (41)

Now, we're going to deal quite a bit with the geometric product of the type
vi = v -1, where v is a vector in the i-plane. Hence v Ai =0 and

vi=—iv. (42)
A simple proof of this relies on the fact that vi is a vector:
vi= (vi)l =ifvl = —iv. (43)
Therefore, with e and u both in the i-plane,

ieuie = —eue. (44)



So, now we arrive at the text’s Eq. (2.30) by replacing u by ui and multiplying
through by i on the left:

iS(ui) = (A4 + A )iui + (A4 — \_)ieuie
=14 + A )u—F(Ay — A_)eue. (45)
From (41) and (45), we can define two new vectors
u; =Su+iS(ui) = (AL + A )u, (46a)
u_ =Su—iS(ui) = (A\; — A_)eue, (46b)

which are the Eqgs. (2.31a) and (2.31b) of the text.
Assuming that Ay > A_, then,

[ug | = £ A (47)
From this we can solve for the lambdas:
A = 3(luy [£]u_|), (48)

which is Eq. (2.33¢) in the text.
From (46b), we can define
i_ = eue, (49)
Then, )
eli_ = ue = ¢'?. (50)

which tells us that e is halfway between the vectors t— and u = tiy. (Think of
e as along the diagonal of a rhombus whose sides are given by vectors ti_ and
ay.) Then,

e =a(ay +a_), (51)

which is Eq. (2.32) in the text. If Gy AtG_ # 0, then
e_ =qa(ay —u-) (52)

(and e_ is along the other diagonal of that rhombus). That e} - e_ = 0 can be
determined by direct computation. These are summarized in Eq. (2.33Db).

Thus we can summarize Mohr’s Algorithm as the following steps:

1. Choose a convenient vector u in the i-plane.
Calculate uy from (46a) and (46b).

For iy AG_ #0, ex = (4 = G_) are principal vectors of S.

-~ W N

Then the principal values are given by Ay = 1 (| uy |£|u_ |), which comes
from (46a) and (46b) by taking absolute values.




Now we skip to the example on page 274. We begin with the symmetric
operator:?!
Su=aaAu+bbAu. (53)

A quick path to a solution is to consider Sa, given by
Sa=aaAat+bbAra=b-bAa=ba—bb-a. (54)
And, foranb=|aAbli
iS(ai) = i[aa A (ai) + bb A (ai)]. (55)
Now, since ai is a vector, then a A (ai) is a bivector, hence
aA(ai) = (a(ai) )y = ((aa)i)s = a%i = a*i. (56)

Similarly,
b A (ai) = (b(ai) ) = ((ba)i)2 = b-ai. (57)

Then, on substituting these results into (55), we have
iS(ai) = i[aa’i + bb-ai]=a® + bb-a. (58)

On setting u in (46a) and in (46b) to &, and using the results of (54) and (58),
we get
a, =[b’a—bb-a] +[a’a+ bb-a] = (a® + b°)a, (59a)
a_=[b’a—bb-a] — [aa+bb-a] = (b* —a®)a—2bb-a, (59b)

which are the results at the bottom of page 274.
From this we easily get that

la, | =a® +b?. (60)
But deriving |a_ | is a little trickier.

la_[> =[(b* — a®)a — 2bb - 4] - [(b? — a®)a — 2bb - 4]

= (b* —a?)? — 4(v* — a?)(b-a)? + 4b*(b - &)?
=(* —d®)? +4(b-a)?. (61a)
Obviously, then
la_|[=[(b* —a®)® +4(a-b)*]'/?, (62)

which gives us the equation at the top of page 275. Using (48), we get
A = 2@+ 02 £ [(0* —a®)? +4(a-b)?|V/?), (63)

which is Eq. (2.39) of the text, though I get with it an overall factor of 1/2.

IThis can be proved symmetric by showng that v -Su = u - Sv.



Now to calculate the principal vectors. From (51) and (52), we get, respec-
tively,

ey =aay +a_), (64a)
e_=ala —a_). (64Db)
Thus,
. PN A (b*> —a*)a — 2bb - a

er =ad ta )=« ai[(b2—a2)2+4(a-b)2]l/2}' (65)

However, we are free to scale this as we please, so we’ll set a = a, to get

b2 — a?)a — 2bb -

e =at ( a’)a a (66)

[(b% — a2)2 + 4(a-b)2]1/2"
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