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Note: It may be helpful to study my notes for the entire chapter before
studying the exercise solutions here.

1 Problem (2.1)

Find the adjoint as well as the symmetric and skew-symmetric parts of the linear
transformation
fx=ax+ab-x+x-A. (1)

On dotting this last equation by y, we get
y-fx=ay -x+y-ab-x+y-(x-A). (2)
Now, we flip-flop between f and its adjoint f:!
fly) x=ay-x+y-ab-x+yAx-A
=ay-x+y-ab-x—xAy-A
=ay-x+y-ab-x—x-(y-A)
=ay-x+y-ab-x—(y-A)-x
=[ay+y-ab—(y-A)]-x
=[ay+y-ab+(A-y)]-x. (3)

Now, since this last equation must be true for arbitrary x and y, we can conclude
that

fy)=ay+y-ab+A-y, (4)
or, in terms of x,

f(x)=ax+x-ab+ A -x. (5)
Now that we have both f and f, we can determine f, and f_.
fr(x) = 3(f(x) + f (%))
=1(lax+ab-x+x-A]l+[ax+x-ab+ A x])
=oax+ jlab-x+a-xb]. (6)

Loy
2
1
2

IWe are using that fx = = fx.



(f(x) = f(x))
(lox+ab-x+x-A] - [ax+x-ab+ A -x])
[ab-x—a-xb+2x-A]. (7

N—= Nl N

2 Problem (2.4)

We write 8™ for the n-fold product of S with itself. Prove that if S is symmetric,
with eigenvalues Ay, then 8™ is also symmetric with eigenvalues A} and having
the same eigenvectors as does S. &

We begin with the equation
Sei = A\ger  (no sum on k), (8)
and we are to show that
S"ep = Ajer, (nosum on k), (9)
Proof by induction. So,
S?er = S(Ser,) = S(\rer) = \iSer, = A\ier,  (no sum on k). (10)
And that concludes the base case. Now, we assume that for all m < n that
S™er = Al'e  (no sum on k), (11)
and then show that the relation holds for the power m + 1 as well. Then,
S(S8™er) = S(A\'er) (nosum on k), (12)
from which we get
S™le, = A" er  (no sum on k), (13)

which is what we needed to show.

3 Problem (2.5)

An linear operator S is given by

801:701+202 + 0,
Soy = 201 4 602 — 203,
So3 = 0 — 209 + b5o3. (14)



Find the eigenvalues and eigenvectors. &

We find the eigenvalues and eigenvectors by solving for the unknowns in the
equation
S(aoy + pog + yo3) = M aoy + Bog + yo3) . (15)

But

S(aoy + Bos + yo3) = aS(o1) + BS(02) +vS(03)
= (701 + 202) + B(201 + 602 — 203)
+’y(—202 +503). (16)

On combining these last two equations, we get

Aaoy + ABog + Ayos = a7y + 203) + (201 + 602 — 203)
+ (=202 + 503). (17)

This last equation has to be resolved component-wise:

o1:da=Ta+20+ 0, (18a)
o2 : A3 =2a+68—2v, (18b)
o3 :Ay= 0 —26+57. (18¢)

And this can be put into matrix form:

T\ 2 0 a 0
2 6-X -2 gl=1|o]. (19)
0 2 5-A) \» 0

Given that the last matrix equation is homogeneous, the 3 x 3 matrix has zero
determinant:

T-A 2 0
2 6-X -2 |=0, (20)
0 -2 5-A

which gives us the characteristic polynomial
AP — 1802 499\ — 162 =0. (21)

The roots to this equation are the eigenvalues we're looking for. Wolfram Alpha
gives the three roots to be

A1:3, )\2:6, )\3:9 (22)

We'll proceed to find an eigenvector that corresponds to the first stated eigen-
value. But since the length of this vector is not uniquely determined, we are
free to set one of its components as we please (with the possible exception of
Z€r0).



So, setting A = 3 in (23), we have

4 2 0\ (o 0
2 3 =2|(s]=|0]. (23)
0 -2 2/ \y 0

Choosing v = 1, then in the last row, we must have that 5 = 1. And setting
B =1 in the first row requires us to set « = —1/2. We are free to rescale these
values to get for the eigenvector for the first eigenvalue to be —1,2,2, or

e, = —01 + 205 + 203. (24)

Note that these values are consistent with the equation derived from the second
row. Anyway, the second and third eigenvectors follow similarly.

4 Problem (2.9)

Let S be a symmetric operator on R? to itself, where we assume the eigenvectors
e, are normalized. Then

3

SX:ZAkx-ekek. (25)
k=1

Show that there exists an inverse operator S~! to S which satisfies the following
equation

3
1
1.
S X—Z/\ka-ekek. (26)
k=1
&

Our plan is to assume the existence of a symmetric operator 7 on R3 to
itself that satisfies the following properties

x=TS8x and x=8Tx forall x. (27)
Clearly, such an operator acts like an inverse for S. Starting with
x =T8x (28)
and then expanding x by ,
x:Zx~ekek. (29)
k=1

we get

3 3
Zx~ekek=T8x=T[ZAkx-ekek]
k=1

k=1

3
:Z)\kx-ekT[ek]. (30)
k=1



This last equation can be expressed in the alternative form

Zx-ek[ek—)\k’]’(ek)] =0.

k=1

For this to be true for arbitrary x, we must have that for each k:

e — )\kT(ek) = O7

whose solution for T (eg) is

1
= — .
] €L )\k (ST

Hence,

3
1
Tx:;)\—kx-ekek.

(34)

Now that we have the form for 7x, it’s a simple matter to demonstrate that

x=8Tx forall x.

And with that accomplished, the proof is finished.

5 Problem (2.10)

Find the eigenvalues and eigenvectors of the tensors

A)Su=aa-u+bb-u,
B) Tu=ab-u+ba-u.

Part A)
So, we use Mohr’s algorithm, beginning with
Su=aa-u+bb-u,

into which we replace u by a, to get
Sa=a’a+a-bb.

To this we add the relation

iS(ai) = i[aa-(ai) + bb- (ai)]

=1i[bb A ai]
=bbAa
=b-bra=0ba—a-bb,

(35)

(36a)
(36b)

(39)



where we used that the vectors a and ai are orthogonal to each other, and that

b-(ai)=(b-(ai)) =((bAaa)-i)=((bAa)i)=bAai. (40)
The paired vectors a; and a_ are given by
a, =Sa+iS(ai) = (a’a+a-bb)+ (b’a—a-bb)
= (a* +b?)a, (41a)
a_ =8a—iS(ai) = (a?a+4a-bb) — (b*a—4a-bb)
=(a®*-b*)a+2a-bb (41b)
Thus, we get
laj | =a®+b° (42a)
la_|> =[(a®> —b*)a+2a-bb]-[(a> —b*)a+2a-bb] (42Db)
la_ | =[(a® — b*)? + 4(a® — b*)(a-b)? + 4b%(a - b)?]"/? (42¢)
= [(a® — b*)? + 4a*(a-b)?]V/2. (42d)
Now, we can calculate the eigenvalue by
)\i:%(|a+|i|a_|). (43)
From this we get that
Ar = 1[(a® +b?) £ [(a® - b*)? +4a?(a-b)?]V/?]. (44)
So, eigenvectors e are given by
A S A (a> —v*)a+2a-bb
er =afay+a_ )= a[ai (@ 192+ da2(a B)2]12 } (45)
Setting o = a, we get
(a> —v*)a+2a-bb
=az . 46
T AT (@ 122 + 4a2(a - b)2 12 (46)
Part B)
So, we again use Mohr’s algorithm, beginning with
Tu=ab-u+ba-u, (47)
into which we replace u by a, to get
Ta=ab-a+ba-a=a-ba+ab. (48)



To this we add the relation
iT(ai) =i[ab-(ai) +ba- (ai)]
=ila-bAai+0]
=a-ba-—ab,

where we used that b - (ai) = (bai) = b A ai.
The paired vectors ay and a_ are given by

a, = Ta+iT (i)
a_ = Ta—iT (i)

(a-ba+ab)+ (ab-a—ab)=2a-ba,
(a-ba+ab)—(ab-a—ab)=2ab.

Hence, we get
ay| =2]a-b],
la_|=2ab.
Now, we can calculate the eigenvalues by
A =1(lay[£]a_]).
From this we get that
A+ =3[2|a-b|+2ab]=|a-b|Lab.
And the eigenvectors e are given by

2a-ba A}

Setting o = a, we get A
er =sgn(b-a)atab.

6 Problem (2.11)

For an operator f specified by the symmetric matrix

| fir o fie
1= [f 12 fa2
with respect to an orthonormal basis o7 and o3, show that

Ae = glfun+ fa2] £ 5| (Jun = f22)" + 407 ‘1/2

are eigenvalues, and the angle ¢ to the vector ey is

2f12

tan2¢ = —m .

(49)

(50a)
(50b)

(51a)
(51b)

(52)



&
We begin with

f(o1) = fuio1 + fi202, (59a)
f(o2) = fa101 + fa202. (59b)

But we are told that f is symmetric, hence, fa; = fi2. Therefore, the last
equations become

f(o1) = furo1 + fi202, (60a)
f(o2) = fi201 + fa202. (60b)

We may as well use o1 as our special vector. Then,

ot = f(o1) +if(o1i). (61)
But 01i = 09, therefore,
oy = f(o1) +1if(o2). (62)
Now, since
if(o2) = i(f1201 + fa202) = f2201 — fi202. (63)
Therefore,
o+ = (fu101 + fi202) + (fo201 — f1202) = (fi1 + fi2)o1, (64)

and, simnilarly,

o_ = (fuio1 + f1202) — (f2201 — f1202) = (f11 — fi2)o1 + 2f1202 . (65)

Next,

loy|=1fi+ fi2] (66a)
o[ =[(fi1 = f22)* + 411" (66b)

Therefore,
Ai:%[f11+f22]i%}(f11—f22)2+4f122|1/2. (67)

Now, to the angle ¢. The equation we need form the text is given on page
273, Eq. (2.35):

Au_
itan2¢ = = U= (68)
ut -u—
But in our case this becomes
No_
itan2¢ = =7 (69)
g4 - 0_



Thus,

opNo— (fi1 + fiz2)or A[(fi1 — fa2)o1 + 2 f1202]
o4 0- (fir + fiz)or - [(fi1 — fa2)o1 + 2f1202]

which reduces to

orNo— _ 2fi2
04 0— foo = fu1
On combining these last three equations, we get that
2
tan2¢ = —ﬂ .
fo2 — fu1

7 Problem (2.12)

Solve the eigenvector problem for the tensor
Su=aaAu+bbAu+ccAu,

wherea+b+c=0. &

Since ¢ = —a — b then

Sa=aaNa+bbAa+(—a—b)(-a—b)Aa
=b-bAa+(a+b)(a+b)Ara
—b-bAa+(a+b)-bAa
=2b-bAa+a-bAa
= (2 +a-b)a—(a+2a-b)b,

and

iS(ai) =ilaaA (ai)+bbA(ai)+ (a+b)(a+b) A (ai))]
i[a’ai+b-ai+ (a+b){aA(ai)+bA(ai)}]
i[a’ai+2b-ai+a(a+b)i+abAa(ai)}]
=i[a’ai+2b-ai+a(a+b)i+a-b(ai)]

=(2a* +a-b)a+ (a+2a-b)b.

Now

)

a, = Sa+iS(ai).

On substituting in, we have that

=[(2t*+a-b)a—(a+2a-b)b]+[(2¢*> +a-b)a+ (a+24a-b)b].

Therefore,
aL = Cl é7

(70)

(71)



where
Ci=2a%2+20%>+2a-b.

And
a_ = Cg a— Cg b,
where
Co=-2d>+20> and C3=2a+4a-b.
Therefore
lay |[=[C ],
and
la_|=[C? +2C,C3a-b+ C2? ]2,

Now, we can calculate the eigenvalues by
Ae=5(lar|£la]).

Finally,
eL = a(é+ + é,) .

I leave it to the reader to do the substitutions if he or she wants to.
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