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1 Reflections and Rotations

Problem (3.1) page 293 of NFCM [1].

Show that the transformation Rx = u−1xu, determined by a nonzero vector u,
is a rotation. Find the axis, the angle and the spinor for this rotation.

For simplicity, let u2 = 1. Given that Rx = u−1xu = uxu, we know that

Rx = uxu = u(x∥ + x⊥)u = x∥ − x⊥ , (1)

where x∥ commutes with u. So, we want to construct a spinor R that has the
same effect on x as R does. This spinor will rotate in the plane orthogonal to

u. A simple guess would lead us to R = e
1
2 iuπ. Let’s check it.

R†xR = e−
1
2 iuπ(x∥ + x⊥)e

1
2 iuπ

= x∥ + x⊥e
iuπ

= x∥ − x⊥ . (2)

♣

Problem (3.2) page 293 of NFCM. Find the inverse of a reflection.

Let the reflection be given by

Ux = −uxu with u2 = 1 , (3)

which reflects x through the plane orthogonal to u. It’s easy to show that the
inverse of U is U :

UUx = U(−uxu) = −u(−uxu)u = x (4)

♣

Problem (3.3) page 293 of NFCM. Prove that the product of three successive
elementary reflections in orthogonal planes is an inversion, the linear transfor-
mation that reverses the direction of every incoming vector.

1



If you hit a racketball just right into the corner of a racketball court, it can
come back at you. Let the normal to the first wall it hits be σ1, the next wall
be σ2, and the last be σ3. Each wall the ball hits will reflect it according to
the rule

x → −σixσi . (5)

After the three such successive hits (reflections), we get

x → (−1)3σ3σ2σ1xσ1σ2σ3

= −(±)i†x(±)i , (6)

where i is the usual right-handed pseudoscalar and i† = −i. Now, if i = σ1σ2σ3,
then we have set-up our system of axes as righthanded and we use the plus sign in
(6); otherwise, we must use the minus sign. In either case, we get, remembering
that the pseudoscalar commutes with vectors,

x → −x . (7)

♣

Problem (3.4) page 293 of NFCM. A unitary spinor R can be given the fol-
lowing parameterizations

R = e(1/2)ia = α+ iβ = α(1 + iγ) =
1 + ib

1− ib
, (8)

where a, β, γ, and b are all vectors. Establish the following relations among
the parameters:

α = cos 1
2a =

1√
1 + γ2

=
1− b2

1 + b2
, (9a)

γ = tan 1
2a = â tan 1

2a =
2b

1− b2
, (9b)

b = tan 1
4a . (9c)

We already know that

e(1/2)ia = cos 1
2
a+ i sin 1

2
a , (10)

and this gives us the first identity α = cos 1
2a. We can add the relation for β

β = sin 1
2
a . (11)

To establish the relation between α and γ = |γ |, we can use the fact that
R is unitary, that is, R†R = 1. Hence

(α(1 + iγ))†(α(1 + iγ) = 1 , (12)

from which we get that
α2(1 + γ2) = 1 . (13)
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If we stipulate that α > 0, then we get

α =
1√

1 + γ2
. (14)

Now we get relations between α and β and b. Since 1 + b2 is never zero

α+ iβ =
1 + ib

1− ib
=

1 + ib

1− ib

1 + ib

1 + ib
=

(1 + ib)2

1 + b2
=

1− b2 + 2ib

1 + b2
, (15)

thus

α =
1− b2

1 + b2
, (16a)

β =
2b

1 + b2
. (16b)

We can get γ as a function of b because γ = β/α (from Eq. (8)):

γ =
2b

1 + b2

/1− b2

1 + b2
=

2b

1− b2
. (17)

We can also use the trigonometric forms for b and α to get the trigonometric
form for γ:

γ =
β
α

=
sin 1

2
a

cos 1
2
a
= tan 1

2
a = â tan 1

2
a . (18)

We end with establishing the trickiest identity, namely (9c). On eliminating
γ between the last two equations, we have that

2b

1− b2
= tan 1

2
a , (19)

or
b = 1

2
(1− b2) tan 1

2
a . (20)

Now we solve (16a) for b2 in terms of α (and we use that α = cos 1
2a):

b2 =
1− cos 1

2a

1 + cos 1
2a

. (21)

Hence,

1− b2 =
2 cos 1

2a

1 + cos 1
2a

. (22)

Substituting this into (20), we get

b =
cos 1

2
a

1 + cos 1
2
a
tan 1

2
a =

sin 1
2
a

1 + cos 1
2
a
= tan 1

4
a , (23)

which I completed by use of a trigonometric identity.
♣
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Problem (3.5) page 293 of NFCM. Given

x′ = Rx = R†xR , (24)

derive the “Rodrigues formula”

x′ − x = γ × (x′ + x) . (25)

My plan is to prove the equivalent form:

i(x′ − x) = iγ × (x′ + x) = γ ∧ (x′ + x) = ⟨γ(x′ + x) ⟩2 . (26)

I’ll do this by expanding the LHS and then the RHS and hope they meet in the
middle. We note that α2(1 + γ2) = 1, and that ⟨γx⊥ ⟩2 = γ ∧ x.

i(x′ − x) = i(R†xR− x)

= i[α2(1− iγ)(x∥ + x⊥)(1 + iγ)− x ]

= i[α2(1− iγ)(1 + iγ)x∥ + α2(1− iγ)2x⊥ − x ]

= i[α2(1 + γ2)x∥ + α2(1− γ2 − 2iγ)x⊥ − x ]

= i[x∥ + α2(1− γ2 − 2iγ)x⊥ − x ]

= i[α2(1− γ2 − 2iγ)− 1]x⊥

= i[α2(1 + γ2)− α2(2γ2 + 2iγ)− 1]x⊥

= i[−α2(2γ2 + 2iγ)]x⊥

= −2α2γ2ix⊥ + 2α2γ ∧ x . (27)

Now we expand the RHS:

⟨γ(x′ + x) ⟩2 = ⟨γ(R†xR+ x) ⟩2
= ⟨γ(α2(1− iγ)(x∥ + x⊥)(1 + iγ) + x) ⟩2
= ⟨γ[α2(1 + γ2)x∥ + α2(1− γ2 − 2iγ)x⊥ + x) ] ⟩2
= ⟨γ[x∥ + α2(1− γ2 − 2iγ)x⊥ + x) ] ⟩2
=����⟨γx∥ ⟩2 + α2⟨γ(1− γ2 − 2iγ)x⊥ ⟩2 + ⟨γx ⟩2
= α2⟨γ(1− γ2 − 2iγ)x⊥ ⟩2 + γ ∧ x

= α2⟨γ[ (1 + γ2) + γ(−2γ2 − 2iγ) ]x⊥ ⟩2 + γ ∧ x

= ⟨γx⊥ ⟩2 + α2⟨γ(−2γ2 − 2iγ)x⊥ ⟩2 + γ ∧ x

= α2⟨γ(−2γ2 − 2iγ)x⊥ ⟩2 + 2γ ∧ x

= −2γ2α2⟨γx⊥ ⟩2 − 2α2γ2⟨ ix⊥ ⟩2 + 2γ ∧ x

= −2γ2α2γ ∧ x− 2α2γ2ix⊥ + 2γ ∧ x

= 2(1− γ2α2)γ ∧ x− 2α2γ2ix⊥ .

= 2α2γ ∧ x− 2α2γ2ix⊥ . (28)
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Thus, we have achieved the results we needed, though I’m sure there’s a
much simpler proof than the one I’ve presented here. I was also able to prove
an alternative proof by establishing that

⟨ (i− γ)x′ ⟩2 = ix+ ⟨γx ⟩2 , (29)

but this was no shorter a proof.
♣

Problem (3.6) page 293 of NFCM. Establish the following vector forms for a
rotation:

x′ = x+ 2αβ × x+ 2β × (β × x) (30a)

= x+ â× x sin a+ â× (â× x)(1− cos a) . (30b)

We’ll solve for (30a) first. As is standard in these types of problems, we’ll
decompose x into

x = x∥ + x⊥ , (31)

where, in this case,

x∥β = βx∥ ,

x⊥β = −βx⊥ .

We’ll also need that
a× b = −ia ∧ b . (32)

This time we’ll set R = α+ iβ, from which we get that

α2 + β2 = 1 ,

α2 − β2 = 1− 2β2 ,

β β · x = β2β̂ β̂ · x = β2 x∥ .

We’ll also need

β × (β × x) = β β · x− xβ2

= β2 x∥ − β2x

= −β2 x⊥ . (33)

Now we can to establish (30a):

x′ = (α− iβ)x(α− iβ)

= (α− iβ)(x∥ + x⊥)(α− iβ)

= (α− iβ)(α+ iβ)x∥ + (α− iβ)(α− iβ)x⊥

= (α2 + β2)x∥ + [(α2 − β2)− 2iαβ ]x⊥

= x∥ + [(1− 2β2)− 2iαβ ]x⊥

= x− 2β2x⊥ − 2iαβ x⊥

= x− 2β2x⊥ + 2αβ × x⊥

= x+ 2αβ × x+ 2β × (β × x) . (34)
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We’ll now solve for (30b). This time we have that

x∥a = ax∥ ,

x⊥a = −ax⊥ ,

and that

â× (â× x) = −x⊥ . (35)

Now we’re ready to establish (30a). But given that the angles in the answer
are not half angles, it behooves us to formulate the spinors to remove the half-
angles as soon as possible.

With
R = e

1
2 ia , (36)

we begin with

x′ = R†xR

= R†(x∥ + x⊥)R

= R†Rx∥ + (R†)2x⊥

= x∥ + (e−ia)x⊥

= x∥ + (x⊥ − x⊥) + (e−ia)x⊥

= x+ (e−ia − 1)x⊥

= x+ (cos a− i sina− 1)x⊥

= x− (1− cos a)x⊥ − iâ x⊥ sin a

= x+ â× x sin a+ â× (â× x)(1− cos a) ,

where I reversed the order of the last two terms.
♣

Problem (3.7) page 293 of NFCM. Derive the following expression for the
matrix elements of a rotation by an arbitrary vector angle a:

ejk = δjk cos a− ϵjkmâm sin a+ âj âk(1− cos a) , (37)

where ϵjkm = i†σj ∧ σk ∧ σm and âk = â · σk, which are the direction cosines
of the rotation axis.

Basically, we can think of this problem as a corollary to the last problem.

x′ = x+ â× x sin a+ â× (â× x)(1− cos a) . (38)

First, we replace x by σk to get

ek = σk + â× σk sin a+ â× (â× σk)(1− cos a) . (39)
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Then, since ejk = ⟨σjek ⟩,

ejk = ⟨σj [σk + â× σk sin a+ â× (â× σk)(1− cos a)] ⟩ . (40)

Let’s look at the parts, starting with the second term:

⟨σj [ â× σk sin a] ⟩ = σj · â× σk sin a

= âmσj · σm × σk sin a

= −âmσj · σk × σm sin a

= −ϵjkmâm sin a .

It may seem like I pulled a fast one here, but I didn’t. It’s true that

â =
∑
m

âmσm , (41)

but since σj · â× σk is antisymmetric in the indices, only the particular value
of the subscript m that is different from both j and k will survive. I called it
m, though m was a dummy variable.

The third term goes as follows:

⟨σj [ â× (â× σk)(1− cos a)] ⟩ = σj · [â× (â× σk)(1− cos a)]

= σj · [(â â · σk − σk)(1− cos a)]

= (âj âk − δjk)(1− cos a) .

Substituting all this back into (40), we get

ejk = δjk cos a− ϵjkmâm sin a+ âj âk(1− cos a) . (42)

♣

Problem (3.9) page 294 of NFCM. Show that any unimodular spinor R can
be written in the form

R = ±(uv)1/2 =
1 + uv

[2(1 + u · v)]1/2
, (43)

where u and v are unit vectors. Then derive the trigonometric relations

cos 1
2a =

1 + cos a

[2(1 + cos a)]1/2
, (44a)

sin 1
2a =

sin a

[2(1 + cos a)]1/2
. (44b)

We’ll aproach the solution from the assumption that

±(uv)1/2 = α+B , (45)
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where α is a scalar andB is a bivector, both to be determined by the constraints.
Squaring both sides, we get

uv = (α2 − |B |2) + 2αB . (46)

This gives us

u · v = α2 − |B |2 , (47a)

u ∧ v = 2αB . (47b)

Now, we can determine a simple relation between α and |B |:

1 = vuuv = [(α2 − |B |2)− 2αB] [(α2 − |B |2) + 2αB] . (48)

After multiplying this out and simplifying, we get that

1 = α2 + |B |2 . (49)

Next we add unity to both sides of (46):

1 + uv = α2 + (1− |B |2) + 2αB = 2α2 + 2αB . (50)

Reorganizing this, we have

α+B =
1 + uv

2α
. (51)

We’re almost there. Now we need an expression for the α in the denominator.
Eliminating |B | between (47a) and (49), and solving for α, gives us

α = [ 12 (1 + u · v)]1/2 . (52)

Substituting this into the last equation, we get

α+B =
1 + uv

[2(1 + u · v)]1/2
, (53)

which gives us the proof we needed for Eq. (43).
Returning to (43) and squaring both sides, we get

R2 = uv = u · v + u ∧ v = cos a+ iâ sin a . (54)

Then

R = e
1
2
a = cos 1

2
a+ iâ sin 1

2
a =

1 + uv

[2(1 + u · v)]1/2
=

1 + cos a+ iâ sin a

[2(1 + u · v)]1/2
, (55)

On equating the scalar and bivector parts of this last equation, we have that

cos 1
2a =

1 + cos a

[2(1 + cos a)]1/2
, (56a)

sin 1
2a =

sin a

[2(1 + cos a)]1/2
. (56b)
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♣

Problem (3.10) page 294 of NFCM. Given that a rotation R(x) = R†xR has
the properties

R(a× b) = a× b , (57a)

R(a) = b , (57b)

show that

±R =
1 + a−1b

[2(1 + a−1 · b)]1/2
. (58)

My plan is to just demonstrate that this spinor works. But first I need to
show that the product a−1b is unimodular.

1 = (ba−1)(a−1b) = a−2b2 , (59)

which implies that a = b, which we can also conclude from (57b). Furthermore,
Eq. (57a) tells us that the plane of rotation is orthogonal to a×b. An identity
we’ll soon need is that

qp = 2p · q− pq . (60)

Now, with the definition K = [2(1 + a−1 · b)]1/2, then

R(a) = R†aR

= K−2[ 1 + ba−1 ]a [ 1 + a−1b ]

= K−2[a+ b ] [ 1 + a−1b ]

= K−2[a+ 2b+ ba−1b ]

= K−2[a+ 2b+ b(2a−1 · b− ba−1) ]

= K−2[ 2(1 + a−1 · b)b) ]
= b . (61a)

♣

Problem (3.11) page 294 of NFCM. For the composition of rotations given by
the spinor equation

R1R2 = R3 , (62)

where

Rk = e
1
2 iak = αk(1 + iγk) , (63)

derive the Law of Tangents:

tan 1
2
a3 = γ3 =

γ1 + γ2 + γ2 × γ1

1− γ1 · γ2

. (64)
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R1R2 = α1(1 + iγ1)α2(1 + iγ2)

= α1α2[ 1 + i(γ1 + γ2)− γ1γ2 ] , (65)

But

R3 = α3(1 + iγ3) = α1α2[ 1 + i(γ1 + γ2)− γ1γ2 ] = e
1
2 ia . (66)

On equating the scalar and bivector parts, we get:

Scalar Part: α3 = α1α2(1− γ1 · γ2) = cos 1
2a , (67a)

Bivector Part: α3γ3i = α1α2[ i(γ1 + γ2)− γ1 ∧ γ2 ] = i sin 1
2a . (67b)

Taking the dual of this last equation, we get

α3γ3 = α1α2[ (γ1 + γ2) + γ2 × γ2 ] = sin 1
2
a . (68)

Now,

tan 1
2
a =

sin 1
2
a

cos 1
2
a
=

α3γ3

α3
= γ3 . (69)

Using (67a) and (68), we have that

tan 1
2
a = γ3 =

α1α2[ (γ1 + γ2) + γ2 × γ2 ]

α1α2(1− γ1 · γ2)
=

γ1 + γ2 + γ2 × γ2

1− γ1 · γ2

. (70)

♣

Problem (3.12) page 294 of NFCM. The sum of the diagonal matrix elements
fkk of a linear transformation f is called the trace of f and denoted by Tr f .
Show that the trace of a rotation R is given by

Tr R =
∑
k

σk · (Rσk) = 1 + 2 cosa , (71)

where a is the vector angle of rotation.

It’s best to consider this problem as a corollary to problem (3.7). If we
remember how we derived the equation

ejk = δjk cos a− ϵjkmâm sin a+ âj âk(1− cos a) , (72)

then the quantity
∑

k σk · (Rσk) is just the value of
∑

k ekk. Therefore,

Tr R =
∑
k

ekk =
∑
k

[ δkk cos a− ϵkkmâm sin a+ âkâk(1− cos a) ]

= 3 cos a+
∑
k

âkâk(1− cos a) , (73)
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where we used that 1)
∑

k δkk = 3 and that 2) for every k, ϵkkm = 0. Lastly,
since the âk’s are direction cosines, then∑

k

âkâk = â21 + â22 + â23 = 1 . (74)

On substituting this last result into (73), we get

Tr R =
∑
k

σk · (Rσk) = 1 + 2 cosa , (75)

where cosa = cos a.
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