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1 Transformation Groups

These notes cover pages 295 to 306 of NFCM [1].

We begin on page 301 for the Euclidean group. Given that an isometry can be
expressed as

x′ = f(x) , (1)

with the property that
(x′ − y′)2 = (x− y)2 . (2)

Then
x′ − y′ = f(x)− f(y) = R(x− y) . (3a)

This equation is true for the pair y and z, was well, yielding

y′ − z′ = R(y − z) . (3b)

Adding these last two equations, we get

x′ − z′ = R(x− y) +R(y − z) . (4)

But we also have that
x′ − z′ = R(x− z) . (5)

Hence
R(x− z) = R(x− y) +R(y − z) . (6)

On setting y to zero in (6), we have that

R(x− z) = R(x) +R(−z) . (7)

On setting z = −x in this last equation:

R(2x) = 2R(x) . (8)

Now, we use induction to show that

R(mx) = mR(x) , (9)
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for any natural number m. Inductive step: Assume that

R((k − 1)x) = (k − 1)R(x) , (10)

for any natural numbers k > 1, then, letting z = −(k − 1)x in (7), we get

R(kx) = R(x) +R((k − 1)x)

= R(x) + (k − 1)R(x)

= kR(x) , (11)

which is what we were to show.
To show that

R(αx) = αR(x) , (12)

for arbitrary scalar α (a real number), we first show that (12) is true for any
rational number given as the ratio of two integersm,n (for the moment positive).
Multiply (9) through by n to get

nR(mx) = m[nR(x)] = mR(nx) . (13)

Now, replace x by y/n:

nR
(m
n
y
)
= mR(y) . (14)

On dividing through by n, we get

R
(m
n
y
)
=

m

n
R(y) . (15)

Since every positive real number can be approximated arbitrarily closely by
some rational number, we accept (12) as correct for α any positive real number.

We can show that
R(000) = 0 . (16)

From (3a), we get that

(x− y)2 = [R(x− y)]2 . (17)

Setting x− y = 000, gives us
(000)2 = [R(000)]2 . (18)

Since our algebra doesn’t admit zero-divisors, then (16) must be true.
To extend (12) to all real numbers, it suffices to show that

R(−x) = −R(x) . (19)

To that end, let’s set z to x in (6), to get

R(000) = 0 = R(x− y) +R(y − x) . (20)

On setting x− y to a, we get

0 = R(a) +R(−a) , (21)
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where a is arbitrary. Therefore,

R(−a) = −R(a) . (22)

♣

We next go to page 302. Given that an isometry R can be expressed as

{R|a}x = R̃xR+ a , (23)

show that successive isometries SR can be expressed as

{S|b}{R|a} = {RS|S̃aS + b} . (24)

Proof:

{S|b}{R|a}x = {S|b}[ R̃xR+ a ]

= S̃[ R̃xR+ a ]S + b

= (S̃R̃)xRS + S̃a ]S + b

= (RS)
∼
xRS + S̃aS + b

= {RS|S̃aS + b} . (25)

We’re now well set up to prove that

{R|a}−1 = {R̃| −RaR̃} , (26)

We begin with the assignment

{R|a}−1 = {S|b} , (27)

where we need to solve for S and b. Thus

{S|b}{R|a}x = {RS|S̃aS + b}x = x , (28)

or
(RS)

∼
x(RS) + S̃aS + b = x , (29)

with solution S = R̃ and S̃aS + b = 0, or

b = −RaR̃ . (30)

But wait! Inverses must be two-sided. We have yet to show that

{R|a}{S|b}x = x , (31)
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which I’ll leave to the reader.

p. 303

Now, to calculate the general form for a rotation about an arbitrary point
b:

First, translate the point b to the origin by T−b x. Of course, this will
translate the whole space as well. Second, do the rotation about the origin with
R. Lastly, translate the entire space in the direction of b with the operator Tb,
which will restore the point b back to where it started. Hence,

Rbx = TbRT−b x

= TbR(x− b)

= TbR̃(x− b)R

= R̃(x− b)R+ b

= R̃xR− R̃bR+ b

= {R|b− R̃bR}x . (32)

Therefore,
Rb = {R|b− R̃bR} . (33)

♣

Our next task is to go from Eq. (4.33) to Eq. (4.34) in the text. Eq. (4.33)
is

b⊥ = a⊥(1−R2)−1 . (34)

We’re interested in the points that are fixed during a rigid displacement
{R|a}x.

{R|a}x = x . (35)

We want to know the points {p} in 3d that satisfy the last equation, so that

R†pR+ a = p . (36)

My first comment is that the vector a has to be rather special. Let n point
along the direction of the rotation axis. So, we have foliated space into an
infinite family of parallel planes, each orthogonal to n. We don’t really care
at this point in the analysis, the point in a given plane about whch the plane
rotates. But to demand that the displacement is not also a translation, we must
not allow the vector a to have a component in the direction (or against it) of n.
Therefore, a = a⊥, which just means that a∥ = 0. So, (36) becomes

R†pR+ a⊥ = p . (37)

Let’s now perform our standard decomposition of p,

p = p∥ + p⊥ . (38)
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Therefore,
R†(p∥ + p⊥)R+ a⊥ = p , (39)

which becomes
p∥ +R†p⊥R+ a⊥ = p . (40)

Or
p⊥R

2 + a⊥ = p⊥ , (41)

which simplifies to
p⊥ = a⊥(1−R2)−1 . (42)

♣

The rest of this demonstration is little more than just complex numbers and
trigonometry. According to the text, we assume that R has the form

R = e
1
2 inϕ . (43)

Then
R2 = einϕ . (44)

Thus

b⊥ = a⊥(1− einϕ)−1

= a⊥
(1− e−inϕ)

(1− einϕ)(1− e−inϕ)

= a⊥
1− e−inϕ

1− (e−inϕ + einϕ) + 1

= 1
2a⊥

1− e−inϕ

1− cosϕ

= 1
2a⊥

1− (cosϕ− in sinϕ)

1− cosϕ

= 1
2a⊥

[
1 + in

sinϕ

1− cosϕ

]
= 1

2a⊥
[
1 + in cot 1

2ϕ
]

= 1
2

[
a⊥ + n× a cot 1

2ϕ
]
. (45)
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