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1 Problem

These notes cover pages 574 to 588 of NFCM [1].
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Show that
(MN)∼ = ÑM̃ , (1)

given that
M∼ = ⟨M† ⟩+ − ⟨M† ⟩− = (⟨M ⟩+ − ⟨M ⟩−)† . (2)

My plan is to use (2) to separately expand both sides of (1) and then meet in the middle.
Every multivector A can be expanded as the sum of its even- and odd-graded parts,

A = A+ +A− . (3)

Thus

ÑM̃ = (N+ +N−)
∼(M+ +M−)

∼

= (N†
+ −N†

−)(M
†
+ −M†

−)

= N†
+M

†
+ −N†

+M
†
− −N†

−M
†
+ +N†

−M
†
−

= N†
+M

†
+ ++N†

−M
†
− − (N†

+M
†
− +N†

−M
†
+) . (4)

And

MN = (M+ +M−)(N+ +N−)

= M+N+ +M+N− +M−N+ +M−N−

= (M+N+ +M−N−) + (M+N− +M−N+) , (5)

so,

(MN)∼ = (M+N+ +M−N−)
† − (M+N− +M−N+)

†

= N†
+M

†
+ ++N†

−M
†
− − (N†

+M
†
− +N†

−M
†
+) . (6)

And so we have established (1).
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Here I will show how to find (1.21)

±L =
1 + γ + γv/c

[2(1 + γ)]1/2
, (7)

from (1.20a)

L2 = γ
(
1 +

v

c

)
, (8)

by taking the square root. I can do this by employing the methods of the unipodal algebra. But,
first, let’s simplify the expression in (8). We rewrite it as

L2 = a+ bv̂ , (9)

where a = γ, b = γv/c, v̂ is a unit vector, and a2 − b2 = 1.

Lemma 1:

Here we deal with the typical relations common to special relativity regarding γ and v/c.

Let
Z+ = (a+ b)

1
2 + (a− b)

1
2 . (10)

On squaring this and simplifying it, we get

Z2
+ = 2(γ + 1) . (11)

On taking the square root of this we get

Z+ = [2(γ + 1)]
1
2 . (12)

By similar reasoning, if we set
Z− = (a+ b)

1
2 − (a− b)

1
2 . (13)

On squaring this and simplifying it, we get

Z2
− = 2(γ − 1) . (14)

On taking the square root of this we get

Z− = [2(γ − 1)]
1
2 . (15)

Now, L2 in (9) is just a unipodal number in standard basis {1, v̂}, and we can directly take its
square root once we’ve put it in the idempotent basis

u+ = 1
2 (1 + v̂) and u− = 1

2 (1− v̂) . (16)

It’s easy to show that
u+ + u− = 1 and u+ − u− = v̂ . (17)

Now, L2 in (9) can be put into the form

L2 = a(u+ + u−) + b(u+ − u−) , (18)
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which simplifies to
L2 = (a+ b)u+ + (a− b)u− , (19)

Now, we just take the square root:

±L = (a+ b)
1
2u+ + (a− b)

1
2u− . (20)

Great, but now we’ve got to return to standard basis:

±L = (a+ b)
1
2 1
2 (1 + v̂) + (a− b)

1
2 1
2 (1− v̂)

= 1
2 ((a+ b)

1
2 + (a− b)

1
2 ) + 1

2 ((a+ b)
1
2 − (a− b)

1
2 )v̂

=
(a+ 1

2

) 1
2

+
(a− 1

2

) 1
2

v̂ . (21)

Now we use the results of the lemma above:

±L = 1
2 [2(γ + 1)]

1
2 + 1

2 [2(γ − 1)]
1
2 v̂ =

(γ + 1

2

) 1
2

+
(γ − 1

2

) 1
2

v̂ . (22)

On multiplying the numerator and denominator of the RHS side by [2(γ + 1)]
1
2 , and simplifying,

using that γ2 − 1 = γv/c, we get

±L =
1 + γ + γv/c

[2(1 + γ)]1/2
. (23)

Lemma 2:

The Fundamental Theorem of Exponentiation in the unipodal algebra:

ex+u++x−u− = ex+u+ + ex−u− . (24)

4 Page 583–5

My goal is to show that the text equation (1.29) is true:

tanh a =
v

c
. (25)

We begin with
L2 = γ + γvv̂/c . (26)

On setting L2 = ea, we need a way to expand ea.
We start as we did last time. With a = aâ:

u+ = 1
2 (1 + â) and u− = 1

2 (1− â) . (27)

It’s easy to show that
u+ + u− = 1 and u+ − u− = â . (28)

To apply (24), we set
a = aâ = a(u+ − u−) = au+ − au− . (29)

Then,
ea = eau++(−a)u− = eau+ + e−au− . (30)
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Expresssing this result in the standard basis, we get

ea = 1
2 (e

a + e−a) + 1
2 (e

a − e−a)â = cosh a+ â sinh a . (31)

Hence, from the components of (26),

tanh a =
sinh a

cosh a
=

γv/c

γ
=

v

c
. (32)

And from (26) and (31), we get that
cosh a = γ . (33)

Lemma 3:

This lemma is a corollary of Lemma 2. Because the scalar multiplier in the exponent of the
fundamental theorem of exponentiation in the unipodal algebra can be complex, the theorem can
be used to prove that

e−
1
2 ib = cos 1

2b− ib̂ sin b . (34)

Useful intermediate results are that

cosh (− 1
2 ibb̂) = cos 1

2b and sinh (− 1
2 ibb̂) = −ib̂ sin 1

2b = −i sin 1
2b . (35)
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Here we will show that a general Lorentz transformation L can be factored as

L = RB , (36)

where R and B satisfy the properties:
R̃ = R† , (37)

and
B† = B . (38)

We begin by defining the multivector A:

A = LL† . (39)

From (1.18b), we have that

LL̃ = L̃L = 1 . (40)

Then

AÃ = LL†(LL†)∼

= LL†L̃†L̃

= L(L̃L)†L̃

= 1 . (41)

And now,
A† = (LL†)† = L††L† = LL† = A . (42)
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From the material at the bottom of page 581, we have determined that A is a particular kind
of Lorentz transformation, called a Boost, which has the form of a scalar plus a vector. We found
that taking the square root of (9) produced (22).

We’ve been asked to prove some properties of B, which is the square root of A. Thus, if we start
with A in the form

A = a+ bv̂ , (43)

and since AÃ = 1, then a2 − b2 = 1. On taking the square root of A, we get that

B ≡ A
1
2 =

(a+ 1

2

) 1
2

+
(a− 1

2

) 1
2

v̂ . (44)

Therefore,

BB̃ =
[(a+ 1

2

) 1
2

+
(a− 1

2

) 1
2

v̂
][(a+ 1

2

) 1
2 −

(a− 1

2

) 1
2

v̂
]

=
a+ 1

2
− a− 1

2
= 1 . (45)

Now, since B is a scalar plus a vector, it’s invariant under the reversion operation, hence,

B† = B . (46)
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Our job now is to show that we can solve for b in

B2B1 = B3e
− 1

2 ib , (47)

where

Bk = ak + bkvk =
1 + γk

[2(1 + γk)]1/2
+

γk/c

[2(1 + γk)]1/2
vk . (48)

to get

tan 1
2b =

v1 × v2

c2(1 + γ−1
1 )(1 + γ−1

2 ) + v1 · v2

. (49)

We will also need (34) and

v3 =
v1 + v2 + (γ−1

2 − 1)v̂2 × (v1 × v̂2)

1 + v1 · v2/c2
. (50)

Now, we plug in, expand, and then take the appropriate graded parts as needed.

(a2 + b2v2)(a1 + b1v1) = (a3 + b3v3)(cos
1
2b− i sin 1

2b) , (51)

Expanding, we get

a2a1 + a2b1v1 + b2a1v2 + b2b1v2v1 = a3 cos
1
2b− ia3 sin

1
2b+ b3(cos

1
2b)v3 − ib3v3 sin

1
2b . (52)

Now, we equate the scalar parts:

a2a1 + b2b1v2 · v1 = a3 cos
1
2b , (53)
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from which we get

cos 1
2b =

a2a1 + b2b1v2 · v1

a3
. (54)

Now, we equate the bivector parts:

b2b1v2 ∧ v1 = −ia3 sin
1
2b , (55)

from which we get

sin 1
2b =

b2b1v1 × v2

a3
. (56)

From there we can form the tangent of 1
2b:

tan 1
2b =

v1 × v2
a1a2
b1b2

+ v1 · v2

. (57)

Given that
a1
b1

=
1 + γ1
γ1/c

, (58)

and that
a2
b2

=
1 + γ2
γ2/c

, (59)

then
a1a2
b1b2

= c2(1 + γ−1
1 )(1 + γ−1

2 ) . (60)

Plugging this result into (57) yields (49).
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