
Problem 1.3 on Page 589

P. Reany

September 4, 2021

1 Problem

On page 589 of NFCM [1], we find problem (1.3): Show explicitly that the Lorentz transformations
have all the properties of a group.

2 Preliminary Knowledge

First, let’s review the properties of a group.

1) We begin with the understanding that a group G is a set of elements, which has a closed binary
operator on it. We’ll represent this binary operator by ∗, though, often, juxtaposition is enough to
represent it. So, if a and b are any two elements of G, then

a ∗ b = c ∈ G . (1)

2) For any three elements of G, a, b, c, the associative rule holds:

a ∗ (b ∗ c) = (a ∗ b) ∗ c . (2)

The structure that G has so far is deemed worthy of its own name, being referred to as a semigroup.

3) If we add to G an identity element for each element, which we’ll call e, then for all a ∈ G

a ∗ e = e ∗ a = a . (3)

A semigroup with identity element is called a monoid.1

4) The last step to get from a monoid to a group is to add-in the inverse property of G, such that
for every element a of G, there exists its inverse a−1, which has the property:

a ∗ a−1 = a−1 ∗ a = e . (4)

Now, when doing real mathematics, we usually drop the training wheels of the ∗ and just
use juxtaposition, and, when dealing with functions, we use function composition as the binary
operation.

1To appreciate the difference between a semigroup and a monoid, note that the set of integers under multiplication
is a monoid; whereas the set of even integers under multiplication is only a semigroup (it lacks an identity element).
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3 Solution

On page 587, we were introduced to the set of Lorentz transformations constituting a group. But
we only saw the first step shown – that of the Lorentz transforms as a binary operator on the space
of Lorentz transformations, meaning that the composite of two Lorentz transformations is another
Lorentz transformation: Let G be the set of Lorentz transformations L. Then,

X ′ = L1(X) = L1XL†
1 , (5)

and
X ′′ = L2(X

′) = L2X
′L†

2 . (6)

Therefore, by taking the composite transformations

X ′′ = L2L1(X) = L2L1XL†
1L

†
2 = (L2L1)X(L2L1)

† . (7)

Therefore, there exists L3 ∈ G, such that

L3( . ) = L2L1( . ) = (L2L1)( . )(L2L1)
† . (8)

1) Thus we have shown that composition of Lorentz transformations of the set G is a closed binary
operation on G.

So, now we trudge through the remaining three requirements of a group:

2) For any three elements of G, L1L2L3, the associative rule holds:

(L1L2)L3 = L1(L2L3) . (9)

This should be intuitively clear to be true, since we have written the Lorentz transformations as a
geometric products of a boost with a rotation; therefore the product of Lorentz transformations is
associative by construction of the geometric algebra of spacetime operators.

(L1L2)L3(X) = (L1L2)L3XL†
3(L1L2)

† (10)

= (L1L2L3)X(L1L2L3)
† , (11)

whereas

L1(L2L3)(X) = L1(L2L3)X(L2L3)
†L†

1 (12)

= (L1L2L3)X(L1L2L3)
† , (13)

Thus we have established (9).

3) The identity element for the Lorentz transformations is obvious the element Le( . ) = 1( . )1†.
Thus,

LeL(X) = (1L)X(1L)† = LXL† = L(X) , (14)

and
LLe(X) = (L1)X(L1)† = LXL† = L(X) . (15)

4) The last step to show that every Lorentz transformation has an inverse. Let L(X) = LXL† be
an arbitrary Lorentz transformation acting on an arbitrary spacetime point X, then, owing to the
property that LL̃ = 1, its obvious inverse L−1 has the property:

L−1(X) = L̃XL̃† . (16)
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So,
LL−1(X) = (LL̃)X(LL̃)† = X , (17)

and
L−1L(X) = (L̃L)X(L̃L)† = X , (18)

where we have used that
L̃L = 1 . (19)

For a proof of this last result, see the Appendix. And this completes our proof that the set of
Lorentz transformations forms a group.

References

[1] D. Hestenes, New Foundations for Classical Mechanics, 2nd Ed., Kluwer Academic Publishers,
1999.

4 Appendix

Theorem:

Given that
LL̃ = 1 , (20)

show that
L̃L = 1 . (21)

Lemma:

We know that the tilde operation performs a space inversion, which is an involution because when
applied twice, it undoes what it did the first time, therefore

˜̃
L = L . (22)

Proof of the theorem:

Returning to (20), we multiply through both sides by L on the left and L̃ on the right, yielding

L̃LL̃L = L̃1L = L̃L . (23)

Or, put another way,
(L̃L)2 = L̃L . (24)

Therefore, the entity
L̃L ≡ e (25)

is an idempotent of the spacetime numbers. As such, it’s either the trivial idempotent, that is,
unity, or else it has nonzero nonscalar parts.

Now, whatever else L̃L is, it’s the product of two Lorentz transformation (i.e., their repre-
sentations) and thus is itself a Lorentz transformation (by its representation). But all Lorentz
transformations are invertible. However, the idempotent e is invertible only if it is equal to unity.
And that answers that. However, for a more algebraic proof, consider what follows:
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Taking the tilde operation on both sides of (25), yields

L̃
˜̃
L = ẽ . (26)

But from (22), we get

L̃L = ẽ . (27)

So, from this last result and that from (25), we have that e = ẽ. This means that e can have only
even parts, say e = α + B, where α is a scalar and B is a bivector. Then, inserting this into the
equation

e2 = e , (28)

we get
(α+B)2 = α+B . (29)

On equating scalar and bivector parts, respectively, we get

Scalar part: α2 − |B |2 = α,
Vector part: 2αB = B.

If B = 0 then α = 1 and then e = 1, therefore

L̃L = 1 , (30)

which is what we were to show. But what if B is not identically zero? Then from the vector part we
get that 2α = 1, or α = 1/2. But substituting in 1/2 for α into the scalar part gives the impossible
value

|B |2 = −1/4 . (31)

Thus, B is identically zero, which affirms Eq. (21).
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