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1 Introduction

These notes cover pages 633 to 649 of NFCM [1].

2 Page 647
We begin by establishing the result lying between Eqs. (4.48) and (4.49) in the text. Eq. (4.48) is
El
P1:—L2—mgc. (1)
c
Eq. (4.37) is
P mac? + cPy mac® + E1 + cp1
2=n(148)= = T2 _ Ml E Bt Py @)
where 8 = v/c, and where
P, =LP|L. (3)

Eq. (4.38) is a passive Lorentz transformation from the CM frame to the Lab frame.
We also have Egs. (4.46a)

P, =U"PU (4)
and (4.46b)
U= LRL = cos 10 + L*isin 0. (5)
L? is related to i by Eq. (4.47)
ir? = L. (6)

Now, we multiply (1) through by ¢ and replace U by its equivalent in (5)

cP3 = [cos %@ —iL%sin %@] [E'L2 — m202} [cos %@ + L%isin %@]
= [cos 1O — iL?sin 1O][E'L? cos 36 + E'isin $© — mac® cos 0 — mac®L%isin ;0]
= F'L? cos® 10+ E'isin10cos 36 — mac? cos? 10
—iE'sin 1O cos 3O + E'L?sin? 10 — moc? L sin® 30
= E'L? — myc®[L*sin® 10 + cos® 10] — imac?('L? — L?) sin 1O cos 10
= E'L* — mac®[cos® 10 + L*sin* 10 +i(L* — L?) cos 10sin 10] . (7)

Getting from here to Eq. (4.49), which is

/
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cPs = E1 — moc®(7? — 1)(1 — cos ©) + N



won’t be any easier. Let’s begin by presenting a number of results that will be useful in this

endeavour. Along with (2) we need:

m202 + E1 — CP1

L =~(1-p) = Vo

Hence,
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And L% is
4 1
L* = E’Q [(WLQC + El) + cp1]
1
= o [(mac? + E1)? 4 ¢*p? + 2(mac® 4+ E1)cp] .
Also
N2 1= 3242

and

maoc? + Ef
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and also -
c’pi
T == 1
Lastly, we need some trigonometric identities:
1-— © 1 (C]
sin? %@ =97 and  cos? %@ = ﬂ,
2 2
and
sin 16 cos 19 7sm@

Now, let’s dig in:
cP3y = E'L*> — moc®[cos® 3O + L*sin® 10 +i(L? — L?) cos 10sin 10|

= (mac® + E' 4 cp) — mac® [ cos® 3O + ﬁ((mgc2 +e1)? +c%pi

—|—2(mgc —|—el)cp1) %6—1—21 Elj’/l cos 1Gsm @]

1
= (mac® + E' + cp) — mac®[3(1 + cos @) + — ((mac® + €1)® + *pi

E/Z
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+ 2(mac? + El)cpl)é(l —cos0O) + 2; P E’

= B + mac? —l—cp—mgcQ[%(l +c0sO) +v°L(1 — cos ©)

cp1 .
E/

+ ﬁ(c pT + 2(mac® + E1)ep1) (1 — cos©) +i

We finish by remembering that ip; = —p1i:
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cP3 = E1 —mac?[ — 1(1 - cos©) ++°1(1 — cosO) +

1 _ m202 + E1
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Now we state a few more results we will need:

E/2

— (1= cos©) +isin@}
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dl pl(m —’y+7cos@+isin@).
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E/

E = 02[(m1 + m2)2 + 2m2K1/c2]1/2,

and

(2m102 + K1) K,

And for good measure, we also have that

cP, = E;, + CPk

and Kj = (y — )mygc”.

T Ay + ma2)? + 2maKy /2]
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Now we separate the scalars from the vectors of (18). The scalar part yields

E3 = E1 — m202(’)/2 — 1)(1 — COS@) 5

and the vector part yields

mac® £
Ps =

Eq. (22a) can be rewritten as

p1(72 f'y+fycos@+isin6)>.
mocC

(v = v3)mic® = mac®(v* = 1)(1 — cos ©)

2 (21’TL102 +K1)K1
_ 1 - cos®
m2¢ 04[(m1 + m2)2 + ngKl/CQ] ( o8 )
2
=m (2m, + K /) Ky (1 -cos®),

where we used (20). Now,

AK K, — K

2[my + ma)? + 2ma Ky /2]

_ (= Dmuc® — (93 — Yhmac?

K K,

(v — ’73)m102
Ky

Ky

~ ma(2my + K1 /c?)(1 — cos ©)

(my +mao)? +2mae Ky /c?

From the vector part we need to show that

tanf =

sin ©

v(a + cos®)’

(19)

(20)



where
El
Mo c?

a= -1, (26)
and @ is the angle between the incoming particle direction and the scattering direction, as seen in
the lab frame. The cosine of this angle is given as P, - p;. On multiplying (27) through by p;* and

simplifying, we get ,

E/
pflpgz%(mzcz —7+’ycos@+isin@>. (27)
The scalar part of this gives us
2 /
pP3. . D3 mac E
—p1~p3:TCOSGZT(W—V—I—WCOSG). (28)
The bivector part of this gives us
2
ps . moc” .
o sinf = — sin© . (29)

On dividing this last equation by the one before it, we get

sin 6 sin ©
cos B’
mac?

— v+ ycos©

Employing « we defined above, yields the text equation (4.52):

sin ©
= 1
tan 0 B P (31)

References

[1] D. Hestenes, New Foundations for Classical Mechanics, 2nd Ed., Kluwer Academic Publishers,
1999.



