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1 Introduction

These notes cover pages 650 to 660 of NFCM [1].

2 The spinor equation for rotations, Fermi-Walker Transport

Pages 650-652.

We begin with three orthonormal vectors {e;} attached to the point particle. The equation of
motion for these axes is given by
dek )

ﬁ:wxek:—g(wek—ekw). (1)

We choose instead to introduce the spinor R to solve this problem, where

dR .
g —LiwR and e = RoR'. (2)
where the o’s are fixed in the lab frame and RTR = 1, as usual. We need to adapt this procedure
to special relativity. In this case, we’ll adopt 4-vectors, a scalar plus a vector. For our 4-velocity V'

we have 1
V=~(c+v) where 7v=—= (3)

V1-p2
and S =wv/c and for future reference, 8 = v/c .
Let the rest frame of the particle be the primed system. Naturally, in this frame the velocity of
the particle v’ is zero, therefore V' = c. Now we’ll perform a Lorentz boost from the rest frame of
the particle to the lab frame, given by

V =LV'L=cL?=~(c+V), (4)

according to (2.23) on pg. 605 of the text. We also have that L = LT and LL =1. We also require
that this same boost connects from the instanteous rest frame’s version of the particle’s principal
axes e to what the observer in the lab would regard them as Ej

Ej = LeyL. (5)
But
ey = RoyR', (6)
therefore,
Ey = (LR)er(LR)". (7)



Let U = LR, so then
E, =Ue,U'. (8)

Time to show that UU = 1. First, we know that R = ( R), and that

(MN)~ =NM, (9)
from (1.16) pg. 580. N _
UU = LR(LR)” = LRR'L=LL =1. (10)
Okay, and
Uv'ut = cUuUt
= cLR(LR)}
= cLRR'LT
=cLL'
=cl?*=V, (11)
which we rewrite as
V=UV'U". (12)

Therefore, the spinor U contains all we need to calculate both the Lorentz boost and the rotation
of the frame, but how to solve for it?

Differentiating UU =1 by proper time 7, we get UU + Ulj' =0, or
Ul =-U0. (13)
Next, we introduce the multivector €2, given by
Q=200. (14)

Then . ~ -
Q=20U =2UU = —2U0U = —-Q. (15)

Hence, Q2 may contain only vector and/or bivector parts.
Q=a+i8, (16)

where both a and 3 are vectors. Together, the six components of these two vectors give us six
degrees of freedom. On rewriting (15), we get the spinor equation of motion:

U=1iaU. (17)
On differentiating (12), we get
V=Uv'Ut+uv'U
= VU + VUl
= s[Qv+vail, (18)
which is (5.10a). Similarly, on differentiating (8) and using (17), we get
UakUT + UUkUT
= %QO']CUJr + %akUTQT
= LB, + E,Q1], (19)

By



which is (5.10b).
We will see that 2 contains all the dynamical information we need, but we must delineate the
separate roles of “internal” vs “external” dynamics, by making the “split”

Q=0,+0_, (20)
where _
Qe =3(Q£c2VA). (21)
In particular,
—2 -
Q= CT(QV +VQh) = 2VV. (22)

It’s now time to show that Q in the V equation in (23) can be replaced by Q. to get
V=3[ v+val], (23)

which means that Q_ describes the rotational motion. L
Let’s define 2V, = Q. V + VQ! | remembering that VV = VV = ¢2, then

2, =Q,V+Vval
1 ~ 1 ~\f
=i+ C—2VQTV)V +Vi(Q+ C—QVQTV)

1 ~
=i@Qv+vah+iv(al+ gvmvf)

=@V +vah +i@Qv+val)

=Qv+val
=2V, (24)

which establishes (23). ' )
To complete Eq. (5.12) pg. 652, remembering that V = (V )g41:

(2 V)or1 = (V)b = (VO oga, (25)
hence )
V=0,V=val. (26)
If we insist that the motion be without rotation, then 2_ = 0 and (22) becomes
Q=c2VV. (27)

This motion is known as Fermi- Walker Transport, in which case, (5.10b) becomes
. 1 .~ .
Ex = [VVE, + E,VV], (28)

and the text adds this disclaimer (pg. 652): “This equation is needed for each Ej to maintain the
orthogonality condition ( ExV ) = 0 as it moves along the particle history.”



3 The Thomas Precession
We return to the factorization of the text equation (5.6):
U=LR. (29)
On differentiating this and employing Equation (2), we get
U=LR+LR=1L2LL - LinwL)U, (30)

and we remember that iR
R= Yo = —LiywR. (31)

Now, we can compare this last equation with Eq. (17) to find a form for Q:
Q = 2LL — LinwL, (32)
which is Eq. (5.15) of the text. From this we get
inw = LL — LQL . (33)

Clearly we will need some useful expression for LL in terms of velocity and acceleration before
we can solve for 2. By the way, we get an expression for O from Eq. (26):

Q, =c2VV. (34)
Let’s start here. Since V = y(c+ v),

vV = [F(c+v) +¥]y(c—v)
=49( = v?) + V(e — V)
(e V) v (e v AR} (35)

But since VV = 2, then its derivative gives us

(VV)=0. (36)
Therefore, the scalar part of (35) is zero:
0={3(c* = v*) —v-v}. (37)
From this we get that
F=c 2 v, (38)

A result we’ll be needing soon follows from this last equation:
HV) =7 (39)
Anyway, our resulting form for VVis
EQ =VV =44V +VAV) =72 (ev +iv X V), (40)

which is Eq. (5.19) in the text.



As for getting to the equation at the bottom of page 653 in the text, starting with Eq. (5.20):

1+c¢ 'V
2(1 +)]t/2’

all I can say in its defense is that I did it my way. Let

L= (V)12 = (41)

-1
c
L=p(c+V) where p= PEERER
Okay, so

c+V)+pV]p(c+ V)]

pp e+ V) +V][(c+ V)]

pp He+V)(e+ V) +Ve+ VV]

2pp A +e(V4+V)+VV] 4+ Ve+VV]. (43)

=[p

2

(
[
[
[

p
p
p

But ¢(V + V) = 2¢%y and VV = ¢2, therefore
LL = p*lpp NP+ 27+ )+ ¢ WV + ¢ 2VV]
= PR A ) + eV T, (14)

It’s funny how our problems repeat: We already found VV and now we're searching for LZ, and in
the middle of it, we now need to find 2pp~!. I'll just present the answer:!

,'y

2pp = ——1—. 45
pp T4 (45)
Continuing,
 ~ 1 . e
IL=———[-A44+cV+c2VV
2(1+7)[ ¥+c +c ]
1 . . .~
= m[—c_l(‘/> + W4 2VV]  (using (39))
1 e S
= — 1% 4
and this can be rewritten as
c(1+7)
B AV + ey + 2 (ev + vV A V)
a c(1+7)
_ 72(c\'r+v/2\\'f) + (v 4+ V) , (47)
(1 +47)

and this brings us to the equation at the bottom of page 653.
The vector part of (47) is

VI 4 AV v v
2LL = +
< = cl+v)  c(l+7)

ol
<.

11 found it convenient to differentiate p2.



The bivector part of (47) is

N 9. .
(2LL ) = % (49)
For the case of Fermi-Walker transport, we get (see page 654)
v :
w:w+:mvxv, (50)

where w is the Thomas Precession. As the text says: “The Thomas precession can be interpreted
as a rotation induced by shifting from of these inertial systems to another.”

4 Particles with an Intrinsic Magnetic Moment (pg. 654—
660)

I hope to do this subsection by the end of the year.
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