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1 Introduction

These notes cover pages 650 to 660 of NFCM [1].

2 The spinor equation for rotations, Fermi-Walker Transport

Pages 650–652.

We begin with three orthonormal vectors {ei} attached to the point particle. The equation of
motion for these axes is given by

dek
dt

= ω × ek = − i

2
(ωek − ekω) . (1)

We choose instead to introduce the spinor R to solve this problem, where

dR

dt
= − 1

2 iωR and ek = RσkR
† . (2)

where the σ’s are fixed in the lab frame and R†R = 1, as usual. We need to adapt this procedure
to special relativity. In this case, we’ll adopt 4-vectors, a scalar plus a vector. For our 4-velocity V
we have

V = γ(c+ v) where γ =
1√

1− β2
, (3)

and β = v/c and for future reference, β = v/c .
Let the rest frame of the particle be the primed system. Naturally, in this frame the velocity of

the particle v′ is zero, therefore V ′ = c. Now we’ll perform a Lorentz boost from the rest frame of
the particle to the lab frame, given by

V = LV ′L = cL2 = γ(c+ v) , (4)

according to (2.23) on pg. 605 of the text. We also have that L = L† and LL̃ = 1. We also require
that this same boost connects from the instanteous rest frame’s version of the particle’s principal
axes ek to what the observer in the lab would regard them as Ek

Ek = LekL . (5)

But
ek = RσkR

† , (6)

therefore,
Ek = (LR)ek(LR)† . (7)
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Let U ≡ LR, so then
Ek = UekU

† . (8)

Time to show that UŨ = 1. First, we know that R = ⟨R ⟩2 and that

(MN)∼ = ÑM̃ , (9)

from (1.16) pg. 580.

UŨ = LR(LR)∼ = LRR†L̃ = LL̃ = 1 . (10)

Okay, and

UV ′U† = cUU†

= cLR(LR)†

= cLRR†L†

= cLL†

= cL2 = V , (11)

which we rewrite as
V = UV ′U† . (12)

Therefore, the spinor U contains all we need to calculate both the Lorentz boost and the rotation
of the frame, but how to solve for it?

Differentiating UŨ = 1 by proper time τ , we get U̇ Ũ + U
˙̃
U = 0, or

U
˙̃
U = −U̇ Ũ . (13)

Next, we introduce the multivector Ω, given by

Ω ≡ 2U̇ Ũ . (14)

Then

Ω̃ = 2U
˙̃
U = 2U ˜̇U = −2U̇ Ũ = −Ω . (15)

Hence, Ω may contain only vector and/or bivector parts.

Ω = α+ iβ , (16)

where both α and β are vectors. Together, the six components of these two vectors give us six
degrees of freedom. On rewriting (15), we get the spinor equation of motion:

U̇ = 1
2ΩU . (17)

On differentiating (12), we get

V̇ = U̇V ′U† + UV ′U̇†

= 1
2ΩV

′U† + 1
2V

′U†Ω†

= 1
2

[
ΩV + V Ω†] , (18)

which is (5.10a). Similarly, on differentiating (8) and using (17), we get

Ėk = U̇σkU
† + UσkU̇

†

= 1
2ΩσkU

† + 1
2σkU

†Ω†

= 1
2

[
ΩEk + EkΩ

†] , (19)
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which is (5.10b).
We will see that Ω contains all the dynamical information we need, but we must delineate the

separate roles of “internal” vs “external” dynamics, by making the “split”

Ω = Ω+ +Ω− , (20)

where
Ω± = 1

2 (Ω± c−2V Ω†Ṽ ) . (21)

In particular,

Ω+ =
c−2

2
(ΩV + V Ω†) = c−2V̇ Ṽ . (22)

It’s now time to show that Ω in the V̇ equation in (23) can be replaced by Ω+ to get

V̇ = 1
2

[
Ω+V + V Ω†

+

]
, (23)

which means that Ω− describes the rotational motion.

Let’s define 2V̇+ = Ω+V + V Ω†
+, remembering that V Ṽ = Ṽ V = c2, then

2V̇+ = Ω+V + V Ω†
+

= 1
2

(
Ω+

1

c2
V Ω†Ṽ

)
V + V 1

2

(
Ω+

1

c2
V Ω†Ṽ

)†
= 1

2 (ΩV + V Ω†) + 1
2V

(
Ω† +

1

c2
Ṽ †ΩV †)

= 1
2 (ΩV + V Ω†) + 1

2 (ΩV + V Ω†)

= ΩV + V Ω†

= 2V̇ , (24)

which establishes (23).
To complete Eq. (5.12) pg. 652, remembering that V̇ = ⟨ V̇ ⟩0+1:

⟨Ω+V ⟩0+1 = ⟨Ω+V ⟩†0+1 = ⟨V Ω†
+ ⟩0+1 , (25)

hence
V̇ = Ω+V = V Ω†

+ . (26)

If we insist that the motion be without rotation, then Ω− = 0 and (22) becomes

Ω = c−2V̇ Ṽ . (27)

This motion is known as Fermi-Walker Transport, in which case, (5.10b) becomes

Ėk =
1

c2
[
V̇ Ṽ Ek + EkṼ V̇

]
, (28)

and the text adds this disclaimer (pg. 652): “This equation is needed for each Ek to maintain the

orthogonality condition ⟨EkṼ ⟩ = 0 as it moves along the particle history.”
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3 The Thomas Precession

We return to the factorization of the text equation (5.6):

U = LR . (29)

On differentiating this and employing Equation (2), we get

U̇ = L̇R+ LṘ = 1
2 (2L̇L̃− LiγωL̃)U , (30)

and we remember that

Ṙ = γ
dR

dt
= − 1

2 iγωR . (31)

Now, we can compare this last equation with Eq. (17) to find a form for Ω:

Ω = 2L̇L̃− LiγωL̃ , (32)

which is Eq. (5.15) of the text. From this we get

iγω = L̃L̇− L̃ΩL . (33)

Clearly we will need some useful expression for L̃L̇ in terms of velocity and acceleration before
we can solve for Ω+. By the way, we get an expression for Ω+ from Eq. (26):

Ω+ = c−2V̇ Ṽ . (34)

Let’s start here. Since V = γ(c+ v),

V̇ Ṽ = [γ̇(c+ v) + γv̇]γ(c− v)

= γ̇γ(c2 − v2) + γ2v̇(c− v)

= γ{γ̇(c2 − v2)− γv̇ · v + γ(cv̇+ v ∧ v̇)} . (35)

But since V Ṽ = c2, then its derivative gives us

⟨ V̇ Ṽ ⟩ = 0 . (36)

Therefore, the scalar part of (35) is zero:

0 = γ{γ̇(c2 − v2)− γv̇ · v} . (37)

From this we get that

γ̇ = c−2γ3v̇ · v . (38)

A result we’ll be needing soon follows from this last equation:

c−1⟨ V̇ ⟩ = γ̇ . (39)

Anyway, our resulting form for V̇ Ṽ is

c2Ω+ = V̇ Ṽ = γ2(cv̇+ v ∧ v̇) = γ2(cv̇+ iv× v̇) , (40)

which is Eq. (5.19) in the text.
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As for getting to the equation at the bottom of page 653 in the text, starting with Eq. (5.20):

L = (c−1V )1/2 =
1 + c−1V

[2(1 + γ)]1/2
, (41)

all I can say in its defense is that I did it my way. Let

L = ρ(c+ V ) where ρ ≡ c−1

[2(1 + γ)]1/2
, (42)

Okay, so

L̇L̃ = [ ρ̇(c+ V ) + ρV̇ ][ρ(c+ Ṽ ) ]

= ρ2[ ρ̇ρ−1(c+ V ) + V̇ ][(c+ Ṽ )]

= ρ2[ ρ̇ρ−1(c+ V )(c+ Ṽ ) + V̇ c+ V̇ Ṽ ]

= ρ2[ ρ̇ρ−1[c2 + c(V + Ṽ ) + V Ṽ ] + V̇ c+ V̇ Ṽ ] . (43)

But c(V + Ṽ ) = 2c2γ and V Ṽ = c2, therefore

L̇L̃ = ρ2[ρ̇ρ−1(c2 + 2c2γ + c2) + c−1V̇ + c−2V̇ Ṽ ]

= ρ2[2ρ̇ρ−1(c2(1 + γ)) + c−1V̇ + c−2V̇ Ṽ ] . (44)

It’s funny how our problems repeat: We already found V̇ Ṽ and now we’re searching for L̇L̃, and in
the middle of it, we now need to find 2ρ̇ρ−1. I’ll just present the answer:1

2ρ̇ρ−1 = − γ̇

1 + γ
. (45)

Continuing,

L̇L̃ =
1

2(1 + γ)
[−γ̇ + c−1V̇ + c−2V̇ Ṽ ]

=
1

2(1 + γ)
[−c−1⟨ V̇ ⟩+ c−1V̇ + c−2V̇ Ṽ ] (using (39))

=
1

2(1 + γ)
[c−1⟨ V̇ ⟩1 + c−2V̇ Ṽ ] , (46)

and this can be rewritten as

2L̇L̃ =
c⟨ V̇ ⟩1 + V̇ Ṽ

c2(1 + γ)

=
cγ̇v + cγv̇+ γ2(cv̇+ v ∧ v̇)

c2(1 + γ)

=
γ2(cv̇+ v ∧ v̇) + c(γ̇v + γv̇)

c2(1 + γ)
, (47)

and this brings us to the equation at the bottom of page 653.
The vector part of (47) is

⟨ 2L̇L̃ ⟩1 =
γ2v̇+ γ̇v + γv̇

c(1 + γ)
=

γ̇v

c(1 + γ)
+

γ

c
v̇ . (48)

1I found it convenient to differentiate ρ2.
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The bivector part of (47) is

⟨ 2L̇L̃ ⟩2 =
γ2iv× v̇

c2(1 + γ)
. (49)

For the case of Fermi-Walker transport, we get (see page 654)

ω = ω+ =
γ2

c2(1 + γ)
v× v̇ , (50)

where ω+ is the Thomas Precession. As the text says: “The Thomas precession can be interpreted
as a rotation induced by shifting from of these inertial systems to another.”

4 Particles with an Intrinsic Magnetic Moment (pg. 654–
660)

I hope to do this subsection by the end of the year.
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