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Abstract

A couple significant results from the theory of nth-order linear DEQs are
produced here by the convenience of geometric algebra, such as Abel’s
Identity and the Variation of Parameters.

1 Introduction

This paper is based on my earlier paper that I believe was published in the
journal Advances in Applied Clifford Algebras in 1994–1995, which I reference
here [1]. And that paper was based somewhat on the earlier paper [2].

I’ve lost all but my preprint version of the paper. Judging by the AACA
website, they seem to have ‘lost’ the first six years of their journal, as their
records seem to go back only so far as 1997, though the journal started in 1991.
All my papers published through the AACA were published in those missing
years. In any case, this paper is rewritten completely from that published paper.

Of note in this paper are the presentations of the nth-order forms of Abel’s
result and the Variation of Parameters from their familar second-order forms.

The form we will adopt for our differential equations to be used is

dn

dxn
Y + a1(x)

dn−1

dxn−1
Y + · · ·+ an−1(x)

d

dx
Y + an(x)Y = b(x) , (1)

where x is real valued, and a1(x), a2(x),. . ., b(x) are real- or complex-valued.
Following convention, we can define the linear operator1

L ≡ dn

dxn
+ a1(x)

dn−1

dxn−1
+ · · ·+ an−1(x)

d

dx
+ an(x) , (2)

so that (1) then takes the form

L(Y ) = b(x) . (3)

1See Appendix 1 for a basic description of a linear operator.
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2 The Homogenous Equation

Now, Y in (3) is not just one solution, but rather n + 1 solutions, beginning
with n solutions

{y1, y2, . . . , yn} (4)

for the homogeneous version of Equation (3), given by2

L(Y ) = 0 , (5)

and one more solution ψ0 to (3), called the particular solution, which we’ll deal
with later. The solutions (4) are linearly independent if the Wronskian W (to
be defined below) is different from zero. (See Appendix 0 to learn about the
importance of the Wronskian in linear differential equations.)

Now we will build a vector out of the solutions to our general nth-order
linear homogeneous equation. Let {σ1, σ2, · · · , σn} be an orthonormal basis for
our space. Consider

y ≡ y1σ1 + y2σ2 + · · ·+ ynσn . (6)

Up to this point, L has operated on scalar functions, but now we generalize L
to operate on vectors. In particular, consider L(y) as a linear operator on Cn,
that is : Cn → Cn:

L(y) = L(y1σ1 + y2σ2 + · · ·+ ynσn)

= L(y1)σ1 + L(y2)σ2 + · · ·+ L(yn)σn

= 0σ1 + 0σ2 + · · ·+ 0σn

= 0 , (7)

since L(yi) = 0 for i ∈ [1, 2, · · · , n] .
Let Cn be the geometric algebra over the complex vector space Cn. We

define the Wronski pseudovector3 P by

P ≡ y ∧ y′ ∧ y′′ ∧ · · · ∧ y(n−2) , (8)

where the primes denote differentiation by x. We also define the Wronski W by

W ≡ P ∧ y(n−1) . (9)

Thus the Wronski is a pseudoscalar for our n-dimensional vector space.4 Fur-
thermore, it’s clear that5

W′ = P ∧ y(n) . (10)

2This paper does not concern itself with how one solves for these n solutions to the homo-
geneous equation; it merely takes their existence for granted.

3Warning: The name Wronski pseudovector does not exist in the literature.
4A pseudoscalar for a vector space of dimension n is a nonzero wedge of n vectors of the

space.
5See Appendix 2 for the calculations.
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Let I be the unit pseudoscalar for Cn, and let I† be the reversion of I so that
II† = I†I = 1. The Wronskian W is defined as the determinant of the Wronski

W = WI† . (11)

Lastly, we define the Wronski vector

P̃ ≡ I†P . (12)

From L(y) = 0 we can immediately form the equation

〈PL(y)〉n = 0 (13)

from which we get
W ′ + a1(x)W = 0 , (14)

where W is just a scalar function of x. (See Appendix 3 for the calculations.)
From (14) we get Abel’s Identity for the Wronskian

W = c1 exp

{
−
∫
a1(x)dx

}
. (15)

Let’s look at the Wronskian in two dimensions. Let y = fσ1 + gσ2. Then
y′ = f ′σ1 + g′σ2 and the Wronski pseudoscalar is

W = y ∧ y′ = (fσ1 + gσ2) ∧ (f ′σ1 + g′σ2) = (f ′g − fg′)σ1 ∧ σ2 . (16)

Now, we have a lot of choice for the form of the pseudoscalar I we need to
construct I†. Let’s make it easy on ourselves and choose I = σ1 ∧ σ2, then

W = WI† = (f ′g − fg′)(σ1 ∧ σ2)I† = f ′g − fg′ . (17)

More generally, we can define the pseudoscalar quantity

Wk ≡ 〈yy′ · · ·y(k−1)y(n)y(k+1) · · ·y(n−1)〉n , (18)

and the scalar quantity

Wk ≡ det (Wk) = WkI
† . (19)

Now, multiply L(y) = 0 on the left by yy′ · · ·y(k−1) and on the right by
y(k+1) · · ·y(n−2)y(n−1), to yield

Wk + ak(x)W = 0 . (20)

By multiplying on the right by I† and solving for ak(x), we get

ak(x) = −W/Wk . (21)

For a comparison see [3] p. 463–467. (See Appendix 4 for the calculations.)
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3 Nonhomogeneous Equation: The Variation of
Parameters

Problem: Solve for the particular solution to L(Y ) = b(x) using, if possible, the
n linearly independent solutions to the homogeneous equation {y1, y2, . . . , yn}.

Solution: The particular solution we seek φ0(x) (which must not be a linear
combination of the homogeneous solutions), must satisfy

L(ψ0) = b(x) . (22)

Let y be a vector such that L(y) = 0 as before in (6). We shall attempt a
particular solution ansatz in the form

ψ0(x) = v1y1 + v2y2 + · · ·+ vnyn , (23)

where the vi’s are functions of x. But we have to reason our way to even suggest
such an ansatz as (23). Remembering that L is a linear operator over the space
of complex-valued functions, then for n complex numbers ci

L(c1y1 + c2y2 + · · ·+ cnyn) = c1L(y1) + c2L(y2) + · · ·+ cnL(yn) = 0 . (24)

The idea then is that if we let the coefficients of the yi’s be functions of x,
to be determined, then maybe the particular solution can be found from (23).
Forming the vector

v = v1σ1 + v2σ2 + · · ·+ vnσn , (25)

and the spinor6

ψ = vy , (26)

then
ψ0 = v · y = 〈vy〉 , (27)

and we obtain the highly useful result that7

L(ψ0) = 〈L(vy)〉 = b(x) . (28)

Okay, we now have the n variables vi(x) to solve for, but only one constraint
equation on them, which is given by (28). Experience tells us that we’re going
to need n − 1 more constraint equations to be able to solve for all the vi(x)’s,
and we just need to invent them.

To that end we set the constraints8

〈v′y 〉 = 〈v′y′〉 = · · · = 〈v′y(n−2)〉 = 0 , (29)

6Please don’t let this name scare you.
7As a general rule, when algebraically solving for variables in geometric algebra, it’s usually

useful to convert dot products and wedge products into geometric products.
8Setting these particular constraints is probably not obvious to the reader, however, they

are suggested as generalizations of the constraints set down in the solution to the Variation
of Parameters solution in second-degree linear differential equations, which is v′ · y = 0.
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and from these we get the relation

v′ ·P = 0 . (30)

(See Appendix 5 for this calculation.)
By differentiating the equations in (29), we get the other constraints we

need. For example, we get

〈v′′y + v′y′ 〉 ≡ 0 . (31)

However, from (29) we know that 〈v′y′〉 = 0, therefore (31) becomes just
〈v′′y〉 = 0. If we continue to take derivatives of these constraints we find
that all terms with v to first- or higher-order derivatives are zero except for the
term in the derivatives of y, 〈v′y(n−1)〉. By expanding L in (28) all those terms
with undifferentiated v add up to 〈vL(y)〉 = 0 (because L(y) = 0), leaving only
〈v′y(n−1)〉.9

Therefore (28) reduces to

〈v′y(n−1)〉 = b(x) . (32)

Thus we get from (32):

〈v′P−1Py(n−1)〉 = v′P−1IW = b(x) . (33)

where we used that v′ ·P−1 = 0 implies that v′ ∧P−1 = v′P−1.
Solving for v′ and integrating gives

v =

∫
b(x)P̃ dx

W
, (34)

where we used (12). Thus

ψ0 = v(x) · y(x) =

∫ x ∆(t, x)

W (t)
b(t) dt , (35)

where ∆(t, x) ≡ I†P(t) ∧ y(x). For a comparison to matrix methods, see [3] p.
235–237 or [4] p. 237–238.

4 Conclusion

If the reader is aware of both Geometric Algebra and Geometric Calculus, he or
she may wonder why the title of this paper refers to the use of the former, but
not the latter, even though clearly we are doing calculus in this paper. I’m not
calling the content of this paper as being about Geometric Calculus because I
consider it to be concern about differentiation with respect to a vector, not with
respect to just a scalar, which is used in this paper.

9See Appendix 6 for more details.
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The two results obtained in this paper are obtained conventionally by form-
ing stacks of differential equations, which are then effectively organized into
matrix equations and solved, or else subjected to determinants. It’s all very
straightforward, but, by comparison to the methods used herein, a tad messy.
I’ve just made a cursory examination of the literature on the Variation of Pa-
rameters method and discovered no proofs of this theorem that do not use the
linear algebra methods I just described. Therefore, the Geometric Algebra solu-
tion to it presented herein may be the only existing alternative to conventional
proofs to the theorem.

The formulas derived here are the same as that derived by conventional
methods, therefore the practical use of them would be no different than the use
of their conventionally derived counterpart.

As a final comment, the constraint v′ ·P = 0 provided us a valuable means
to the algebraic solution to the Variation of Parameters. But we shouldn’t stop
there. P is a hyperplane generator and someone should investigate what’s likely
to be an important geometry concerning this space. Maybe you.

5 Appendix 0: The Wronskian in Linear Differ-
ential Equations

The use of the Wronskian in this paper is as a corollary to how it’s used in a
wider arena. In this paper, we wanted to know if a certain set of n functions of
x, namely, the n solutions to the homogeneous differential equation (5), formed
a linearly independent set

{y1, y2, . . . , yn} (36)

Obviously, the above functions are intimately related to each other as co-
solutions to some homogeneous differential equation.

But let’s now assume we have a set of n arbitrarily chosen functions of x,
none of them being identically zero,

{g1(x), g2(x), . . . , gn(x)} , (37)

and we ask if there is a simple test to determine if together they form a linearly
independent set of functions. Linear independence is a fundamental concept in
linear algebra. So what does it mean?

Let S be a space of real-valued or complex-valued functions, as presented to
us in (37). Let n scalars, as yet undetermined, be given as

{c1, c2, . . . , cn} . (38)

Now, these functions are said to be linearly dependent if it is possible to solve for
one of them in terms of the rest of them. So, let’s say, without loss of generality,
that we can solve for g1(x) in terms of the rest of them, as follows

g1(x) = a2g2(x) + a3g3(x) + . . .+ angn(x) , (39)
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where the ai’s are constants, and in this case the gi’s form a linearly dependent
set.

Now, if we put all the g’s on the LHS, we can write (39) as

g1(x)− a2g2(x)− a3g3(x)− . . .− angn(x) = 0 , (40)

where the coefficient of the g1(x) term is unity. Let’s instead put all these
functions on a level playing field by rewriting (40) as

c1g1(x) + c2g2(x) + c3g3(x) + . . .+ cngn(x) = 0 . (41)

So, let’s turn to cases. What if the only way to make the equality hold in (41)
is for all the ci’s to be zero. Then no one of the gj(x)’s can be solved in terms of
the rest of them and we conclude that the functions are not linearly dependent.
Another term for being ‘not linearly dependent’ is to be linearly independent.

Now, it’s not possible for just one of the ci’s to be nonzero, say cj , for then
we would conclude that the functional value of gj(x) is zero, which we have
assumed cannot be the case. Therefore, for a linear dependence to exist on the
gi(x) of Eq. (41), there must be at least two nonzero coefficients of the ci’s.

From this point on, I will give examples in two dimensions to save ourselves
from clutter. And we add one more condition to our functions so that we can
use the so-called Wronskian analysis, and that conditions of that our functions
of interest are all differentiable.

Let us now consider the linear dependence of two differentiable functions f
and g. Then we form the equation

c1f(x) + c2g(x) = 0 . (42)

On taking the derivative of this equation, we get

c1f
′(x) + c2g

′(x) = 0 . (43)

Now, if we regard c1 and c2 as our two unknowns to solve for, then we can form
the matrix equation out of these last two equations, to get(

f(x) g(x)
f ′(x) g′(x)

)(
c1
c2

)
=

(
0
0

)
. (44)

Let’s abstract this matrix equation to

Ac = 0 , (45)

where

A =

(
f(x) g(x)
f ′(x) g′(x)

)
and c =

(
c1
c2

)
. (46)

At this point, I’ll invoke some results from linear algebra. First, if matrix A
is invertible, then

c = A−10 = 0 , (47)
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which tells us that the only solutions for c1 and c2 are zeros, hence f(x) and
g(x) are linearly independent of each other. And from linear algebra, we know
that A is invertible if and only if det(A) = |A | 6= 0.

Now, in the terminology of linear differential equations, the matrix we de-
fined in Eq. (46) [we called the ‘Wronski’] and its determinant is conventionally
called ‘Wronskian’ and is usually written as W . Therefore, our conclusion is that
the functions f and g are linearly independent if and only if their Wronskian is
not zero. Otherwise, they are linearly dependent.

To generalize, when f1, f2, . . ., and fn represent n solutions to an nth-order
linear homogeneous differential equation, the matrix A represents the Wron-
skian, and to ensure that the solutions are linearly independent, the Wronskian
must be different than zero. Another reason we need the Wronskian to be
nonzero is because it shows up in the denominator of our solution for the par-
ticular solution (35).

6 Appendix 1: Linear Differential Operators

This appendix quickly goes over the linearity of the differential operators dis-
cussed in this paper. I’ll demonstrate on second-order differential equations,
but the same is trivially true for nth-order differential equations.

First, what exactly is meant by a ‘linear operator’? A linear operator dis-
tributes over addition and commutes with scalars. That is, if L is a linear
operator over a space of objects, containing two arbitrary elements A and B of
some space S, then

L(A+B) = L(A) + L(B) . (48a)

Now, if α is a scalar such that αA is also in space S, then for L to be a linear
operator, we also require that

L(αA) = αL(A) . (48b)

Consider the differential equation

d2

dx2
Y + a1(x)

d

dx
Y + a2(x)Y = b(x) . (49)

Now, I’m claiming that the operator defined by

L ≡ d2

dx2
+ a1(x)

d

dx
+ a2(x) , (50)

so that (1) then takes the form

L(Y ) = b(x) , (51)

is an operator on the space of functions in the variable x.

Proof:
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Let A and B be complex-valued functions. It’s proven in calculus that the
derivative by x distributes over A and B; hence,

d

dx
(A+B) =

d

dx
(A) +

d

dx
(B) . (52)

Therefore, multiplying by a1(x) will distribute as well:

a1(x)
d

dx
(A+B) = a1(x)

d

dx
(A) + a1(x)

d

dx
(B) . (53)

Similarly, it’s clear that, on setting d/dxA = A′, then

d2

dx2
(A+B) =

d

dx
(A′ +B′)

=
d

dx
(A′) +

d

dx
(B′) (using (52))

=
d2

dx2
(A) +

d2

dx2
(B) . (54)

And as for the zero-derivative function a2(x),

a2(x)(A+B) = a2(x)(A) + a2(x)(B) . (55)

Finally, we have that

L(Y1 + Y2) =
[ d2
dx2

+ a1(x)
d

dx
+ a2(x)

]
(Y1 + Y2)

=
d2

dx2
(Y1 + Y2) + a1(x)

d

dx
(Y1 + Y2) + a2(x)(Y1 + Y2)

=
d2

dx2
(Y1) +

d2

dx2
(Y2) + a1(x)

d

dx
(Y1) + a1(x)

d

dx
(Y2)

+a2(x)(Y1) + a2(x)(Y2)

=
[ d2
dx2

+ a1(x)
d

dx
+ a2(x)

]
(Y1) +

[ d2
dx2

+ a1(x)
d

dx
+ a2(x)

]
(Y2)

= L(Y1) + L(Y2)

Done. And we can add any number of higher derivative terms to L and get
the same result.

I leave to the reader to show that for some complex number c

L(cA) = cL(A) . (56)

7 Appendix 2: Proof that W′ = P ∧ y(n)

We begin with
P ≡ y ∧ y′ ∧ y′′ ∧ · · · ∧ y(n−2) , (57)
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where the primes denote differentiation by x. Now,

W ≡ P ∧ y(n−1) = y ∧ y′ ∧ y′′ ∧ · · · ∧ y(n−2) ∧ y(n−1) . (58)

Before we differentiate W, let’s look at a more generic case. Let

F = A ∧B ∧C ∧ · · · ∧ Z . (59)

Then

F′ = A′ ∧B ∧C ∧ · · · ∧ Z + A ∧B′ ∧C ∧ · · · ∧ Z

+ A ∧B ∧C′ ∧ · · · ∧ Z + · · ·+ A ∧B ∧C ∧ · · · ∧ Z′ . (60)

This is just the product rule for differentiation, where there is a term in the sum
for each factor of the product, which gets differentiated. I won’t prove here a
vital fact: In any term made out of multiple wedge products, if any two factors
of that product are equal, the whole product vanishes. So, if we differentiate
over (58), we get

W′ = y′ ∧ y′ ∧ y′′ ∧ · · · ∧ y(n−2) ∧ y(n−1) + y ∧ y′′ ∧ y′′ ∧ · · · ∧ y(n−2) ∧ y(n−1)

+ · · ·+ y ∧ y′ ∧ y′′ ∧ · · · ∧ y(n−1) ∧ y(n−1)

+ y ∧ y′ ∧ y′′ ∧ · · · ∧ y(n−2) ∧ y(n) . (61)

So, the first term on the RHS vanishes because it has two factors of y′, and the
term after it vanishes because it has two factors of y′′, and this process of factors
vanishing will continue until we reach the last factor, which has no manifestly
identical factors in it, leaving us with

W′ = y ∧ y′ ∧ y′′ ∧ · · · ∧ y(n−2) ∧ y(n) = P ∧ y(n) . (62)

8 Appendix 3: Proof that W ′ + a1(x)W = 0

Because of (7), whatever P is

〈PL(y)〉n = 0 . (63)

But, in particular, since

P ≡ y ∧ y′ ∧ y′′ ∧ · · · ∧ y(n−2) , (64)

and L(y) is given by

L(y) =
[ dn
dxn

+ a1(x)
dn−1

dxn−1
+ · · ·+ an−1(x)

d

dx
+ an(x)

]
y

= y(n) + a1(x)y(n−1) + · · ·+ an−1(x)y′ + an(x)y . (65)
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Therefore,〈
PL(y)〉n = 〈P

[
y(n) + a1(x)y(n−1) + · · ·+ an−1(x)y′ + an(x)y

]〉
n

=
〈[
y ∧ y′ ∧ · · · ∧ y(n−2)]

[
y(n) + a1(x)y(n−1) + · · ·+ an(x)y

]〉
n
.

(66)

Only two terms of this do not identically vanish, therefore〈
PL(y)〉n = y ∧ y′ ∧ · · · ∧ y(n−2) ∧ y(n) + a1(x)y ∧ y′ ∧ · · · ∧ y(n−2)y(n−1)

= W′ + a1(x)W . (67)

So, on combining this result with (63), we get that

W′ + a1(x)W = 0 . (68)

By multiplying this equation through on the right by I†, we get the differential
equation precursor to Abel’s Identity:

W ′ + a1(x)W = 0 . (69)

Integrating this, we have Abel’s Identity:

W = c1 exp

{
−
∫
a1(x)dx

}
. (70)

9 Appendix 4: Proof that Wk + ak(x)W = 0

We define the pseudoscalar quantity

Wk ≡ 〈yy′ · · ·y(k−1)y(n)y(k+1) · · ·y(n−1)〉n , (71)

and the scalar quantity

Wk ≡ det (Wk) = WkI
† . (72)

We know that

L(y) = y(n) + a1(x)y(n−1) + · · ·+ an−1(x)y′ + an(x)y = 0 . (73)

Now, multiply L(y) = 0 on the left by yy′ · · ·y(k−1) and on the right by
y(k+1) · · ·y(n−2)y(n−1) and take the pseudoscalar parts, the only surviving terms
presenting

〈yy′ · · ·y(k−1) [y(n) ]y(k+1) · · ·y(n−1)〉n+

+ 〈yy′ · · ·y(k−1) [ ak(x)y(k) ]y(k+1) · · ·y(n−1)〉n = 0 ,
(74)

to yield
Wk + ak(x)W = 0 . (75)
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10 Appendix 5: Proof that v′ ·P = 0

We begin this proof with

P = y ∧ y′ ∧ y′′ ∧ · · · ∧ y(n−2) . (76)

Then, if we define the m-blade A by

A = a1 ∧ a1 ∧ a2 ∧ · · · ∧ am . (77)

To demonstrate how this works, we present the general rule of taking the inner
product of an arbitrary vector b and an arbitrary m-blade A, then the rule to
expand b ·A is given by

b ·A = (b · a1)a2 ∧ a3 ∧ · · · ∧ am − (b · a2)a1 ∧ a3 ∧ · · · ∧ am

+ · · ·+ (−1)m+1(b · am)a1 ∧ a2 ∧ · · · ∧ am−1 . (78)

Therefore,

v′ ·P = (v′ · y)y′ ∧ y′′ ∧ · · · ∧ y(n−2) − (v′ · y′)y ∧ y′′ ∧ · · · ∧ y(n−2)

+ · · ·+ (−1)(n−2)+1(v′ · y(n−2))y ∧ y′ ∧ · · · ∧ y(n−3) . (79)

Now, the constraints we have chosen are

〈v′y 〉 = 〈v′y′〉 = · · · = 〈v′y(n−2)〉 = 0 , (80)

which can also be expressed as

v′ · y = v′ · y′ = · · · = v′ · y(n−2) = 0 . (81)

So, when we plug these values into (80), we get that all the terms on the RHS
vanish. Therefore, we have shown that

v′ ·P = 0 . (82)

By the way, since P and P−1 differ only by a scalar multiple, namely, P 2, Eq.
(82) lets us also claim that

v′ ·P−1 = 0 , (83)

which will be a useful result for later on.

11 Appendix 6: Arriving at 〈v′y(n−1)〉 = b(x)

To arrive at
〈v′y(n−1)〉 = b(x) . (84)

we need

L(ψ0) = 〈L(vy)〉 = b(x) . (85)
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To that end we set the constraints

〈v′y 〉 = 〈v′y′〉 = 〈v′y′′〉 = · · · = 〈v′y(n−2)〉 = 0 , (86)

and from these we get the relation

v′ ·P = 0 . (87)

By differentiating 〈v′y 〉 = 0 in (86) we get the other constraints we need. For
example, we get

〈v′′y + v′y′ 〉 ≡ 0 . (88)

However, from (29) we know that 〈v′y′〉 = 0, therefore (88) becomes just
〈v′′y〉 = 0. If we continue to take derivatives of these constraints we find
that all terms with v to first- or higher-order derivatives are zero except for the
term 〈v′y(n−1)〉. By expanding L in (28) all those terms with undifferentiated
v add up to

〈vL(y)〉 = 0 (89)

since L(y)〉 = 0. This leaves the only surviving term to be 〈v′y(n−1)〉. Thus
(94) reduces to (88).

Let’s put in a few convincing steps: I will show how to move from (86) to

〈v′′y 〉 = 〈v′′y′〉 = · · · = 〈v′′y(n−2)〉 = 0 , (90)

and so on.
By differentiating 〈v′y′ 〉 = 0 in (86) we get the another constraint we need:

〈v′′y′ + v′y′′ 〉 ≡ 0 , (91)

but 〈v′y′′ 〉 = 0 therefore,
〈v′′y′ 〉 ≡ 0 , (92)

and so on. The next row of derivatives is

〈v′′′y 〉 = 〈v′′′y′〉 = · · · = 〈v′′′y(n−3)〉 = 0 , (93)

where we stop at v′′′y(n−3) because the largest derivative operator is Dn
x .

Now let’s put the pieces together. Equation (28) becomes

〈L(vy)〉 = 〈[ d
n

dxn
+ a1(x)

dn−1

dxn−1
+ · · ·+ an−1(x)

d

dx
+ an(x)](vy)〉 = b(x) . (94)

And this distributes to be〈 dn
dxn

(vy)
〉
+a1(x)

〈 dn−1
dxn−1

(vy)
〉
+· · ·+an−1(x)

〈 d
dx

(vy)
〉
+an(x)

〈
(vy)

〉
= b(x) .

(95)
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Let’s examine the leading term, which distributes to be

〈 dn
dxn

(vy)
〉

=
〈 dn−1
dxn−1

(�
�>

0
v′y + vy′)

〉
=
〈 dn−2
dxn−2

(��
�*0

v′y′ + vy′′)
〉

...

=
〈 d
dx

(vy(n−1))
〉

=
〈
v′y(n−1)〉+

〈
vy(n))

〉
. (96)

Therefore,

〈L(vy)〉 =
〈
v′y(n−1)〉+

〈
vy(n)

〉
+ a1(x)

〈
singular terms + vy(n−1)〉

+ a2(x)
〈
singular terms + vy(n−2)〉

+ · · ·+
+ an−1(x)

〈
singular terms + vy′

〉
+ an

〈
vy
〉

= b(x) . (97)

Now, if we sum up all the terms in which v is not differentiated, we get 〈vL(y)〉
which is zero because L(y) = 0. Finally, if we ignore all the singular terms
(their values are zero), we end up with〈

v′y(n−1)〉 = b(x) . (98)
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