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Abstract

This paper is a redo of an article that first appeared in the Arizona Journal
of Natural Philosophy, July, 1995. Some scientists seem to believe that the
unreasonable effectiveness of Clifford algebras in physics is too good to be
true. They resist using it or allowing themselves a chance to understand
it because of psychological and/or philosophical prejudices. Some of them
even admit all this. This short essay attempts to alleviate those doubts.

1 Introduction

In 1991, the well-known scientist, E. T. Jaynes, wrote in the advanced physics
book, The Electron [1, p. 5] a paper called “Scattering of Light by Free Elec-
trons,” the following to complain of David Hestenes’s use of Clifford algebra in
his SpaceTime Algebra [2]:

Physicists go into a state of mental shock when they see a single
equation which purports to represent the sum of a scalar and a
vector. All of our training, from childhood on, has ground into us
that one must never dream of doing such an absurd thing. . . .

What bothers Jaynes is Hestenes’s use of equations such as

uv = u · v + u ∧ v . (1)

where u ·v is a scalar and u∧v is a “vector” (really a bivector, unless interpreted
projectively). Jaynes tries to make sense of this by suggesting that the ‘+’ and
‘=’ signs in (1) have different meanings than in ordinary scalar or vector algebra.
He suggests that it’s like adding apples and oranges together.

Well, in one sense Jaynes is right but in another he is wrong. If interpreted
broadly enough the ‘+’ and ‘=’ signs can be understood to have the same
meaning for scalar, vector, and multivector algebra, where a “multivector” is an
arbitrary element of a Clifford algebra. We will define addition as the process
of adding “like” things together.

Now, two things are said to be “alike” if the both belong to the same math-
ematical object, such as a group, a ring, a field, a vector space, or a general
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algebra. Each of these objects have in common 1) at least one binary (possibly
n-ary) operator that associates for any two (or n) elements of a given set another
element of the set, and 2) all have a way of defining the equality or inequality of
any two elements of the set, and 3) for our purposes here, we take the binary (n-
ary) operations to be associative. Both groups and vector spaces allow for only
one binary operation defined for elements of the sets they’re defined on, though
the vector space also allows for the multiplication of the vectors by scalars. It
takes some but not much faith to accept these latter two mathematical objects
because each is well within the grasp of our intuition.

But this is not the case with more complicated objects, such as an algebra,
of which a ring and a field are special types. A generally accepted definition of
“algebra” is lacking in the literature, and I’ve no doubt that this contributes to
the lack of faith in general algebras being applied to physics. The most general
way to define an algebra is to start with a module, a mathematical object that
allows the multiplication of one kind of mathematical object by another, such as
the multiplication of a vector by a supposedly different thing, a scalar, which is
our familiar notion of a vector space. For our purposes here, however, let’s just
assume that an algebra is any set of elements which are closed under addition
‘+’ of elements and multiplication of elements of a given set. Examples are the
ring of integers, the field of reals or complex numbers, and matrix algebras.

But we must ask ourselves on what basis we are going to label things like
scalars and vectors as “different.” Is it on the basis of our intuitions or is it on
the basis of mathematical concinnity. The history of mathematics shows that
when people restrict themselves to merely intuitive justifications then they lose
the great potential of mathematics. At one time it was considered impossible
to justify adding positive and negative numbers, remember? For the sake of
argument, let’s adopt an abstract and pragmatic notion of “likeness” of numbers.
Let’s say that there are generally two forms of “alikeness” to be defined on the
elements of an algebra. The first is called “additive alikeness” and it applies to
any two elements of any algebra simply because any two elements of an algebra
can be added together in a meaningful way, by which I mean that their sum is
still an element of the algebra. You see, in the abstract world of algebras, the
only meaning that can be assigned to any mathematical object in creation is
how it relates to the algebra formally. The first way to relate is either to be in
the set or not to be in the set.

The next way that any two elements in a set can be related is by another
abstract assumption or definition placed on the set. One way to go is to define
equivalency on the set, but this is not the direction to go to best demonstrate the
quandary over Clifford algebras. That direction is in the notion of “selection.”
But before I can properly define selection I must first explain equality ‘=’ on
an algebra. When we see an equation such as

A = B , (2)

we know it to mean that everything taken together on the left-hand side of the
‘=’ is equal to everything taken together on the right-hand side of the ‘=’. I have
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not attempted to present this notion rigorously because this aspect of an algebra
is not a point of contention. The contentions in the case of Clifford algebra (or
at least the case of geometric algebra in which the scalars are taken to be the
real numbers) is that on top of the axioms of addition and multiplication of
multivectors is also the axiom of grade, or step, selection. This axiom is as
follows: Given Equation (2), then for each k for 0 ≤ k ≤ n

〈A〉k = 〈B〉k , (3)

where the notation 〈〉k represents the kth-graded part of the multivector it
operates on.

Clifford algebra is really a sophisticated way to encode, manipulate, and
retrieve information. And geometric algebra is a sophisticated way to encode
and retrieve geometric information. I cannot explain just how this magical pro-
cess works so well for the applications to geometry and much less for physics,
for I see it as part of the mysterious “unreasonable effectiveness of mathemat-
ics.” However, I can credit it to the advantages of having scalars, vectors, and
bivector as additively alike, by intentionally building a geometric interpretation
into the algebra (this is done by choosing axioms to facilitate a geometrical in-
terpretation), by adopting an associative algebra from the start, and by much
more.

But even though I can’t explain the magic of adding ‘apples and oranges,’ I
can demonstrate that we’ve been doing it in mathematics from childhood! We
add reals and fractions as though they are the same, though they have different
axiomatic foundations. We add primes and composites as though they are
the same, though they differ in important ways. We add reals and imaginaries
together to get “complex” numbers, and we even define a selection rule on them.
For example, if the equation in (2) represents complex numbers, then we write

〈A〉Re = 〈B〉Re , (4a)

〈A〉Im = 〈B〉Im . (4b)

In chemistry we have no hesitation to write

x1 HNO3 = x2 NO2 + x3 O2 + x4 H2O , (5)

and then to decode part of this encoding of information as

〈x1 HNO3〉O = 〈x2 NO2 + x3 O2 + x4 H2O〉O (6)

to represent the conservation of oxygen to get

O: 3x1 = 2x2 + 2x3 + x4 . (7)

In a word problem in the last article we thought of ratiator fluid as a mixture
of water (W ) and alcohol (A) to get

W1 ⊕A1 + ∆W = W2 ⊕A2 , (8a)
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or
(W1 + ∆W )⊕A1 = W2 ⊕A2 . (8b)

Indeed, on the surface this looks like two different additions, but they’re not
really. If we drop the circles on the plus signs in (8a) we can recapture the
essence of (8b) by introducing selection on (8a), giving us for the case of water

〈W1 + A1 + ∆W 〉W = 〈W2 + A2〉W (9a)

or
W1 + ∆W = W2 . (9b)

The concept of selection is one of the most powerful concepts for solving prob-
lems and for creating identities, for by it we can virtually emplace into a selector
any object of the algebra we like which the selector maps to zero. If the concept
of selection were taught to students from the beginning of their education then
people would have no difficulty with adding apples and oranges, which, by the
way, can be added as follows:

A1 ⊕O1 + A2 ⊕O2 = (A1 + A2)⊕ (O1 + O2) . (10)
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