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Abstract

I recently saw this problem solved by Michael Penn on his YouTube chan-
nel, from March 16, 2022, “A nice geometry problem with complex num-
bers.” Penn solved the problem using complex numbers. My goal here is
to solve the problem using vectors and then the use geometric algebra to
translate between Penn’s solution and my own vector solution.

Introduction

Figure 1. The two tangent lines meet on the circle at points α
and β, the lines intersecting at point γ. Determine γ as a function

of α and β. This is a unit circle.

Given the graphic in Fig. 1, find a formula for the location of point γ in the
complex plane as Michael Penn presented the solution of the location of point
γ in the complex plane as

γ =
2αβ

α+ β
, (1)

where Penn treats this circle as having radius unity.
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Figure 2. The two tangent lines meet on the circle at points a
and b, the lines intersecting at point c. Determine c as a function

of a and b. This circle has radius R.

Solution using vectors

We know that the vector a is perpendicular to the line c − a at the point a.
From this we get that

a · (c− a) = 0 , (2)

from which we have that
a · c = a · a = a2 , (3)

which will soon come in handy. We likewise know that the the vector b is
perpendicular to the line c− b at the point b. And given that

|a | = |b | = R , (4)

it’s easy to show by the Pythagorean Theorem that triangles △a000c and △b000c
are congruent. Hence, identifying corresponding angles, we get

∠a000c = ∠b000c . (5)

Thus, if we think of a and b as basis vectors, c must by symmetry be repre-
sentable as equal parts of both of them. Thus,

c = λ(a+ b) , (6)

where λ is a scalar, that is, a real number, which now we’ll solve for. Dotting
(6) through by a, we get

a · c = λ(a2 + a · b) . (7)

Using the result from (3), we get that

a2 = λ(a2 + a · b) . (8)
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On solving this for λ, we get

λ =
a2

a2 + a · b
=

1

1 + â · b̂
. (9)

On substituting this into (6), we get that

c =
a+ b

1 + â · b̂
. (10)

So, after we’ve developed the transformation rules in geometric algebra to con-
vert between complex numbers and vectors, we can show that (1) is equivalent
to (10).

Complex numbers in geometric algebra

Let G2 be the geometric algebra of the plane of the linear combinations of
basis vectors σσσ1 and σσσ2, where σσσ1 is the unit vector along the x-axis and σσσ2 is
the unit vector along the y-axis. The even subalgebra of G2, G+

2 , is the algebra
formed by the scalar and bivector (pseudoscalar) elements of G2. The set of all
vectors of G2 do not form a subalgebra of G2. Since the even elements of G2

commute with each other, G+
2 is isomorphic to the complex numbers.

The unit imaginary of G+
2 is given nonuniquely by

i = σσσ1σσσ2 , (11)

where
i2 = −1 . (12)

Let x be any vector in the plane, then

xi = −ix . (13)

Now, we’ll see how to map vectors into complex numbers. Let x be any vector
in the plane, given by

x = xσσσ1 + yσσσ2 , (14)

in the usual way. Next, we multiply through on the left by σσσ1 to get

σσσ1x = x+ yi = z , (15)

where we used (11). If, instead, we have the complex number z and we wish to
find its corresponding vector x, we just multiply (15) through by σσσ1 on the left,
to get

x = σσσ1z . (16)

On using the reversion operator across (15) we have

z† = xσσσ1 = x− yi . (17)
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Hence, the reversion operation on our “complex” numbers fulfills the role of
complex conjugation.

Finally, on taking the reversion of (16), we get that

x = z†σσσ1 . (18)

Thus, from this last equation and (16)

σσσ1z = z†σσσ1 . (19)

Therefore, on multiplying through by σσσ1 on the right, we have that

σσσ1z σσσ1 = z† . (20)

Now, some useful lemmas:

Lemma 1

The product of two vectors is an even element and thus is will commute with all
other even elements (complex numbers). Thus, if p and q are any two vectors
in G2 and ω is any element of G+

2 then

pqω = ω pq . (21)

Lemma 2

Given a, b, and R as defined above

(a+ b)2 = 2R2(1 + â · b̂) . (22)

Proof:

(a+ b)2 = a2 + 2a · b+ b2

= R2 + 2R2â · b̂+R2

= 2R2(1 + â · b̂) . (23)

Lemma 3

Given a and b as defined above

â(a+ b)b̂ = (a+ b) . (24)

Proof: The product â(a + b)b̂ is the geometric product of three vectors, and
thus has vector and trivectors parts, generally. However, since we are considering
this product in 2-dimensional space, its trivector part is identically zero. Thus
â(a+ b)b̂ must be a vector. Now, let

V ≡ â(a+ b)b̂ . (25)
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On taking the reversion of both sides of this last equation, we get

V† = V = b̂(a+ b)â . (26)

On multiplying the corresponding sides of these last equations, we get

V2 = [b̂(a+ b)â][â(a+ b)b̂] = (a+ b)2 . (27)

Hence,
V = ±(a+ b) , (28)

where we must choose the plus sign. Therefore,

â(a+ b)b̂ = (a+ b) . (29)

From Penn’s complex solution to my vector solution

Now it’s time to transform Eq. (1) to Eq. (10). Our first step is to rewrite
(1) into the form

γ(α+ β) = 2αβ . (30)

We can virtually emplace σσσ2
1 = 1 in a couple useful places:

γσσσ1σσσ1(α+ β) = 2ασσσ1σσσ1β , (31)

which gives us
γσσσ1(a+ b) = 2ασσσ1b . (32)

Next, we multiply this on the left by σσσ1 and use (20) to get

γ†(a+ b) = 2α†b . (33)

On taking the reversion of both sides, we have that

(a+ b)γ = 2bα . (34)

Now we multiply on the left by (a+ b):

(a+ b)2γ = 2(a+ b)bα . (35)

Solving this for γ and using (23) and (21), we get

γ =
α(a+ b)b̂

R(1 + â · b̂)
. (36)

Multiplying on the left by σσσ1, and using that σσσ1γ = c and σσσ1α = a, we get

c =
a(a+ b)b̂

R(1 + â · b̂)
=

â(a+ b)b̂

1 + â · b̂
=

a+ b

1 + â · b̂
, (37)

where we also used (24).
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Compare the solutions for a specific problem

Let’s try the case when α = i and β = 1. Then

γ =
2αβ

α+ β
=

2i

i+ 1
= 1 + i . (38)

However, to convert to the equivalent vectors, we have that α = i → a = σσσ2

and β = 1 → b = σσσ1. Hence,

c =
a+ b

1 + â · b̂
=

σσσ2 + σσσ1

1 + 0
= σσσ1 + σσσ2 . (39)

This is the same result we would get if we multiplied (38) through by σσσ1 and
interpreted i as i = σσσ1σσσ2.
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