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Abstract

This paper contains my personal notes on the paper The Design of Linear
Algebra and Geometry.1 My comments are meant 1) to clarify certain
parts of the exposition (especially for readers, like myself, who are not
experts in projective or conformal geometry), 2) to fill-in some of the
steps in the mathematical derivations, and 3) to report on a few mistakes
that may remain in the preprint version of the paper. As a word of
warning, this paper will make no attempt to teach the full fundamentals
of geometric/Clifford algebra, though it will spend some time enhancing
the discussion on it presented in the paper.

1 Introduction

This paper is the third of a series of papers on projective geometry (and now
linear algebra) papers written by D. Hestenes and his coauthors. The first
paper was Projective Geometry with Clifford Algebra,2 The second paper was
D. Hestenes, Universal Geometric Algebra, Quarterly Jur. of Pure and Applied
Mathematics, Simon Stevin 62, 253–274, (September – December, 1988). These
papers were published in the late 1980s and early 1990s. The reader should
consider these two papers, especially the geometric algebra part, as prerequisites
for this paper.

I will be referencing both the published version of the present article and its
preprint version. It is not my purpose to present a full introduction to geometric
algebra in these notes. However, I will try to flesh-out some of the steps to the
equations that have been left to the reader to provide. And, in particular, I
will skip over those aspects of this paper that are well trodden in the first two
papers of this series. After a brief introduction, that will take us to page 68 in
the published version, which is page 4 of the preprint.

1D. Hestenes, The Design of Linear Algebra and Geometry, Acta Appl. Math. Vol. 23 ,
65–93 (1991.

2D. Hestenes, R. Ziegler, Projective Geometry with Clifford Algebra, Acta Appl. Math.
Vol. 23, 25–63 (1991).
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2 Outermorphisms

Once we have defined a linear transformation f on a vector space, we have a
natural way to extend that transformation f onto all elements of the geometric
algebra over that vector space. The basic form it takes is

f(A+B) = f(A) + f(B) , (1)

which is Eq. (2.1), together with

f(a1 ∧ a2 ∧ · · · ∧ ar) = f(a1) ∧ f(a1) ∧ · · · ∧ f(ar) , (2)

Now, to every linear transformation f on a vector space, there exists a cor-

responding transformation f (called the adjoint of f) that goes in the opposite
direction, that satisfies the relation

⟨BfA ⟩ = ⟨ (f B)A ⟩ , (3)

An equation we’ll need is (2.15)

f−1A =
f (AI)I−1

det f
=

I−1f (AI)

det f
. (4)

Now, Eq. (2.17) is new to this series, so I’ll start with it. Let’s begin with
Eq. (2.13):

A · (fB) = f [ (f A) ·B ] or (fB) ·A = f [B · (f A) ] . (5)

First, we swap the under bars with the over bars, to get

A · (f B) = f [ (fA) ·B ] or (f B) ·A = f [B · (fA) ] . (6)

Second, we replace B with I−1, to get

A · (f I−1) = f [ (fA) · I−1 ] or (f I−1) ·A = f [ I−1 · (fA) ] . (7)

We want the equation on the LHS of (7), which gives us

A · (det fI−1) = f [ (fA) · I−1 ] . (8)

which becomes
(det f)AI−1 = f [ (fA)I−1 ] . (9)

Next, we replace A on the RHS by ÃI

(det f)AI−1 = f [ (fÃI)I−1 ] . (10)

Then,
(det f)A = f [ (fÃI)I−1 ]I . (11)
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The equation I’m aiming for is (2.19)

(det f)A = f [ (f Ã)I ] . (12)

In order to get there from (11), we need to show that

f [ (fÃI)I−1 ] = f [ (f Ã)I ]I−1 . (13)

The next significant equation doesn’t have an equation number in the original
papers, and it is

(f−1A) ∧ (f−1B) =
[ f (AI)I ] ∧ [ (f B̃)I ]

(det f)2
=

[ (f Ã)I ] · (f B̃)

(det f)2
I

=
f {f [ (f Ã)I ] · B̃}

(det f)2
I =

f [A · B̃ ]I

det f

=
f [ (A ∧B)I−1 ]

det f
. (14)

To follow the proof of this theorem, we need a lemma:

Lemma 1: Let
A = ⟨A ⟩s and B = ⟨B ⟩r . (15)

Then,
A ∧ (BI) = (A ·B)I . (16)

A ∧ (BI) = A ∧ ⟨BI ⟩n−r

= ⟨ABI ⟩n−r+s

= ⟨ABI ⟩n−(r−s)

= (A ·B)I . (17)

Now, applying this to the numerator of the first term of the first line on the
RHS of (14), we get

[ f (AI)I ] ∧ [ (f B̃)I ] = {[ (f Ã)I ] · (f B̃)}I . (18)

To follow the proof of Eq. (2.21), we need some definitions. First up is for
the meet ∨ of two objects:

A ∨B ≡ Ã ·B , (19)

where
Ã ≡ AI−1 , (20)
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3 Invariant Blades

We define an eigenblade of f to arise in the case that

fA = λA , (21)

where λ is a real number. In the projective sense, the blade A in (21) is ‘fixed’
by the transformation, as we can ignore the specific value of λ. Now, to those
who are used to dealing with the eigenvectors and eigenvalues of vectors due to
the action of a linear transformation, ignoring the magnitudes of the eigenvalues
may seem terribly strange, but that is the nature of, and the main virtue of,
projective geometry. An eigenblade is said to be symmetric if the action on it
by f is the same as the action of f on it.

Now, we already know that for a unit pseudoscalar I:

fI = f I = (det f)I ≡ µI . (22)

We may well ask if the fact that a particular blade A is an eigenblade of f

whether or not Ã is an eigenblade of f , where Ã = AI−1.
We need Eq. (2.14) for this proof. Start with Eq. (2.13) and interchange f

with f :

A · (f B) = f [ (fA) ·B ] or (f B) ·A = f [B · (fA) ] . (23)

Now, replace B by the unit pseudoscalar I:

A(f I) = f [ (fA)I ] or (f I)A = f [ I(fA) ] , (24)

which is Eq. (2.14). So, let’s take the LHS of the last equations, replacing
fA = λA and then replace I by I−1:

A(f I−1) = f [ (λA)I−1 ] , (25)

which becomes
(det f)Ã = λf (Ã) . (26)

On rearranging and using (22), we get

f (Ã) =
µ

λ
Ã , (27)

which is Eq. (3.4).
Given that

I = A−1Ã = A−1 ∧ Ã , (28)

and that step(I) = n, step(A) = r, and step(Ã) = n− r, then

f (I) = (f A−1) ∧ f (Ã) =
µ

λ
(f A−1) ∧ Ã , (29)
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where we used (27). But, since f (I) = µI, then this last equation can be written
as

I =
1

λ
(f A−1) ∧ Ã . (30)

On comparing this to (28), we can set I = X ∧ Ã. We can try the ansatz

X = λA+B , (31)

where
B ∧ Ã = 0 . (32)

On substitution, we have that

I = A ∧ Ã , (33)

hence,

f A−1 = A+
1

λ
B . (34)

For the time being, I will skip over the rest of this section to move ahead
into more general topics.

4 Projective Splits

At this point, I will content myself to just reproduce the notes I made for the
similar part of the article Universal Geometric Algebra [3], at least for the first
part of this section.

Earlier, we saw the points of P2 as represented by vectors in V3. Now we’ll
generalize this to Pn (Vn) as embedded in the vector space Vn+1.

We’ll construct an algebraic relationship between Vn+1 and Vn. We now
define the set of ‘vectors’

Vn = {x ∧ e0 |x ∈ Vn+1} , (35)

which is Eq. (34) in the preprint paper.
If you take the geometric algebra of this, Gn, you get first the bivectors of

Vn+1, of course. If you take inner products of bivectors, you get scalars. If
you combine the bivectors to make higher-graded objects, you get 4-vectors,
6-vectors, etc. In other words, all that taken together gives us the set of even
elements of Gn+1. But does this set have an algebraic structure? It does. Since
the product of any two even elements of Gn+1 is another even element of Gn+1,
then the set constitutes the even subalgebra of Gn+1.

But what about the set of ‘vectors’ we defined in (35)? Is this really a
’vector’ space? It certainly is under the usual definition of a vector space. It
has a zero vector, namely e0 ∧ e0 = 0. It’s closed under addition of ‘vectors’
and under scalar multiplication, etc.
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But wait! If Vn as defined in (35) is a legitimate vector space, then it should
have its own geometric algebra Gn, right? Right.

Anyway, back to analyzing a typical element of Vn, that being x ∧ e0. Let’s
think about this in P2, which is the projective plane in V3. We said that if a
and b are any two distinct points in P2, that we can represent the join of these
points as a∧ b. This join is a line in P2 containing points a and b. Furthermore,
a ∧ b is a 2-blade in G3.

One way to think of P2 that contains the point e0 is that it is the set of all
points in P2 whose joins with e0 are orthogonal to e0. The text claims that
x∧e0 is a linear map from Vn+1 to Vn. Let’s investigate this a bit more formally.
Let L be a map from Vn+1 to Vn,

L : Vn+1 → Vn given by L(x) = x ∧ e0 . (36)

Show that this mapping is linear. Let α be a scalar, then,

L(αx) = (αx) ∧ e0 = α(x ∧ e0) = αL(x) . (37)

So, it treats scalars properly. What about vector addition?

L(x+ y) = (x+ y) ∧ e0 = x ∧ e0 + y ∧ e0 = L(x) + L(y) . (38)

And it treats vector addition properly, hence, it’s a linear map.
We can give the elements of Vn a cosmetic upgrade by letting x0 = x ·e0 ∈ R

and x ≡ x ∧ e0/x · e0 for each x ∈ Vn+1, then

xe0 = x · e0 + x ∧ e0 = x0(1 + x) , (39)

which is Eq. (36) in the preprint paper.

Lemma:
e0x = x0(1− x) . (40)

Proof:

e0x = (xe0)
† = [x0(1 + x ∧ e0) ]

† = x0(1− x ∧ e0) = x0(1− x) , (41)

where x0 = x · e0 and x = x ∧ e0/x · e0.

We’ll now prove Eq. (37), which is

a ∧ b = a0b0(a− b+ b ∧ a) = a0b0(u+ a ∧ u) , (42)

where e20 = 1, ae0 = a0(1 + a), and be0 = b0(1 + b).
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So, for the proof:

a ∧ b = 1
2 (ab− ba)

= 1
2 (ae0e0b− be0e0a)

= 1
2 [ (ae0)(e0b)− (be0)(e0a) ]

= 1
2 [ a0b0(1 + a)(1− b)− a0b0(1 + b)(1− a) ]

= a0b0[a− b+ 1
2 (ba− ba) ]

= a0b0[a− b+ b ∧ a ] . (43)

If we let u ≡ a−b and M ≡ a∧u = b∧a, this last result can be written as

a ∧ b = a0b0(a− b+ b ∧ a) = a0b0(u+ a ∧ u) . (44)

Lemma:
a ∧ b · c = c · b ∧ a = −c · a ∧ b , (45)

where a,b, c are vectors.

Proof:

⟨abc ⟩1 = ⟨abc ⟩†1 = ⟨ cba ⟩1 .

Expanding both sides,

⟨a · bc+ a ∧ bc ⟩1 = ⟨ cb · a+ cb ∧ a ⟩1 .

On dropping a term, gives

⟨a ∧ bc ⟩1 = ⟨ cb ∧ a ⟩1 .

Hence,
a ∧ b · c = c · b ∧ a = −c · a ∧ b , (46)

Now, on to Eq. (38), which is a bit more involved.

x ∧ a ∧ b = x0a0b0[ (a− x) ∧ u+ xa ∧ u)e0 = 0 . (47)

The reason this quantity is zero is by design, since we are looking for all x that
lie in the plane described by the 2-blade a ∧ b. So, we begin:

Let B ≡ a ∧ b, then x ∧ a ∧ b can be expressed as x ∧B. Hence,

x ∧B = 1
2 (xB +Bx) . (48)

Now, it’s time to be a little bit tricky in how we introduce the projective split.
We’ll start by multiplication on the right by e0:

2x ∧Be0 = xBe0 +Bxe0 . (49)
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We already have an expression for B = a ∧ b in (44), therefore,

2x ∧Be0 = xBe0 +Bxe0

= x[ a0b0(u+ a ∧ u) ]e0 + [ a0b0(u+ a ∧ u) ]xe0 . (50)

Let Ω = 2x ∧Be0/x0a0b0, then (with e20 = 1)

Ωx0 = x[u+ a ∧ u ]e0 + [u+ a ∧ u ]xe0

= xe0e0[u+ a ∧ u ]e0 + [u+ a ∧ u ]xe0

= x0(1 + x){e0[u+ a ∧ u ]e0}+ [u+ a ∧ u ]x0(1 + x) . (51)

Therefore, some simplification yields

Ω = (1 + x){e0(u+ a ∧ u)e0}+ (u+ a ∧ u)(1 + x) . (52)

So, now everything hinges on how we can get rid of the e0’s in the first term
on the RHS. With the understanding that the vectors a and u are orthogonal
to e0, and that e2 = 1, we get

e0(u+ a ∧ u)e0 = e0ue0 + e0a ∧ ue0

= (2e0 · u− ue0)e0 + ⟨ e0a ∧ ue0 ⟩2
= −u+ e0 · (a ∧ u ∧ e0)

= −u+ a ∧ u . (53)

On substituting this result into (52), we get

Ω = (1 + x)(−u+ a ∧ u) + (u+ a ∧ u)(1 + x)

= −u+ a ∧ u− xu+ x · a ∧ u+ x ∧ a ∧ u+ u

+ a ∧ u+ a ∧ x+ a ∧ u · x
= 2a ∧ u+ (ux− xu) + 2x ∧ a ∧ u

= 2a ∧ u+ 2u ∧ x+ 2x ∧ a ∧ u

= 2(a− x) ∧ u+ 2x ∧ a ∧ u , (54)

where, on going between steps 2 and 3, we did a lot of cancellation, using, in
particular, (45). Hence, we have (50) becoming

2x ∧Be0/x0a0b0 = 2(a− x) ∧ u+ 2x ∧ a ∧ u . (55)

From this we get

x ∧B = x0a0b0[ (a− x) ∧ u+ x ∧ a ∧ u ]e0 . (56)

Using that B = a ∧ b, we have that

x ∧ a ∧ b = x0a0b0[ (a− x) ∧ u+ x ∧ a ∧ u ]e0 . (57)
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For x ∧ a ∧ b to vanish, we need

(a− x) ∧ u = 0 and x ∧ a ∧ u = 0 . (58)

Now we have arrived at a fun part of the paper: the part that proves the
invariance of the cross ratio. So, we start with three distinct points a, b, c on
a given line in P2. (We deduce that the wedge product of any two of them is a
nonzero scalar multiple of the wedge product of any other two of them.)

So, if we can show that

b0a ∧ c(b− c) = a0(b ∧ c)(a− c) , (59)

then we can write
a ∧ c

b ∧ c
=

a0(a− c)

b0(b− c)
=

a0
b0

a− c

b− c
, (60)

which is Eq. (39) in the preprint paper.
In preparation, we need a couple results first. For one, b − c is related to

a− c by a factor of a nonzero scalar multiple,3 say α, or

b− c = α(a− c) . (61)

Now, on wedging this last result by c on the left, we get the next result

c ∧ b = αc ∧ a . (62)

We also need the following lemma. Starting with

a ∧ c = a0c0(a− c+ c ∧ a) , (63)

we get that

α(a ∧ c) = a0c0(α(a− c) + αc ∧ a)

= a0c0((b− c) + c ∧ b)

=
a0
b0

b0c0((b− c) + c ∧ b)

=
a0
b0

b ∧ c . (64)

So, let’s start on the LHS of (59) and proceed to the RHS.

b0a ∧ c (b− c) = a ∧ c b0α(a− c)

= α(a ∧ c) b0(a− c)

=
a0
b0

b ∧ c b0(a− c) (using (64))

= b ∧ c a0(a− c)

= a0(b ∧ c)(a− c) . (65)

3This is because points a, b, and c lie on the same line.
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However, Eq. (60) has the scalars a0 and b0, thus this relation, being based
on only three points, is not the invariant relationship we seek. To find it, let’s
substitute d for c (where d is yet another distinct point on the same line) in (60)
to get

a ∧ d

b ∧ d
=

a0(a− d)

b0(b− d)
=

a0
b0

a− d

b− d
, (66)

If we now divide (60) by (66) we get

a ∧ c

b ∧ c

b ∧ d

a ∧ d
=

a− c

b− c

b− d

a− d
, (67)

which is Eq. (40) of the preprint paper and is also the invariant cross ratio,
based on four distinct points.

Next. we examine translations. We pick a direction e0 in Vn+1 to determine
a family of hyperplanes by x · e0 = λ. Given that our translation operator Ta is
given by

Tax = x+ ax · e0 = x+ ax · e0 , (68)

determine the operator Tax, subject to the constraints

Tae0 = e0 and a · e0 = 0 . (69)

The general equation that relates linear transformations and their adjoints is

⟨ (Tay)x ⟩ = ⟨ yTax ⟩ . (70)

Let’s try an ansatz for Ta consistent with (69), namely,

Tay = αy + βe0 . (71)

Then, we get
⟨ (αy + βe0)x ⟩ = ⟨ y(x+ ax · e0) ⟩ , (72)

or, rather,
αy · x+ βe0 · x = y · x+ y · ax · e0 . (73)

From this we get
α = 1 , β = a · y . (74)

Therefore, we can rewrite (71) in terms of x as

Tax = x+ a · x e0 , (75)

which is Eq. (4.20).
It’s straightforward to produce the equation between (4.20) and (4.21).

Ta(x ∧ y) = Ta(x) ∧ Ta(y)

= [x+ ax · e0 ] ∧ [ y + ay · e0 ]
= x ∧ y + a ∧ (x · e0y − y · e0x) . (76)
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The last equation I want to establish before going on to the next section is
Eq. (4.32).

S2
0 is a rotor that rotates, without rescaling, the vector e0 to v, and both of

these vectors are unit vectors.
v = S2

0e0 . (77)

Then, S0 rotates e0 through half that angle. Let’s refer to the resultant vector
as u.

u = S0e0 , (78)

It’s easy to see that the vector u shares the same direction as e0 + v, since
both these vectors have the same length and thus their sum results in a vector
half-way between them. If we divide this vector by its magnitude, we get a unit
vector. Therefore,

u = S0e0 =
e0 + v

| e0 + v |
=

v + e0
| e0 + v |

. (79)

On solving this for S0, we get

S0 =
(v + e0)e0
| e0 + v |

=
ve0 + 1

| e0 + v |
=

ve0 + v2

| e0 + v |
=

v(v + e0)

| e0 + v |
, (80)

which is Eq. (4.32). Finally, solving for S0 from (77), we get

S0 = (ve0)
1/2 . (81)

5 Conformal and Metric Geometry

There’s not a lot of computation to do in the first subsection. To me, the most
interesting equation to deal with in this subsection is (5.20), which is

M = 1
2 [A(1 + e0) +B(e1 + e2) + C(e1 − e2) +D(1− e0) ] , (82)

where the coefficients are scalars, and

[ e1 ] =

[
0 1
1 0

]
, [ e2 ] =

[
0 1
−1 0

]
, [ e0 ] =

[
1 0
0 −1

]
. (83)

On performing the sums or differences in (82), we get the four basis elements[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
, (84)

of a four-dimensional vector space over the real numbers.

⊢ Our next big goal is to establish Eq. (5.44).
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We start with a vector basis for V2 = V(1, 1), namely, {e1, e2}, where

e21 = 1 , e22 = −1 , e1 · e2 = 0 , (85)

and these properties have been chosen as much for convenience as for anything
else. In this basis we can choose

e0 ≡ e1 ∧ e2 , (86)

where e0 is a 2-blade of G2
n+2. From which we derive that

e20 = 1 . (87)

Now, the magic occurs when we adopt a null basis set for V(1, 1), {e+, e−},
where

e± ≡ 1
2 (e1 ± e2) . (88)

It’s easy to show that e2± = 0, and this is possible because of the mixed signatures
of e1 and e2. But what about e+ · e− and e+ ∧ e−? With a little algebra, one
can show that

e+ · e− = 1
2 , e+ ∧ e− = 1

2e0 . (89)

On using this latter equation, we have that

x · e0 = 2x · e+ ∧ e− = 2(x · e+e− − e+x · e−) . (90)

Now, we will square this last equation, remembering that x · e+ and x · e− are
scalars, to get

(x · e0)2 = −4x · e+x · e− . (91)

Okay, the fundamental expansion of xe0 is given by

xe0 = x · e0 + x ∧ e0 . (92)

On taking the reverse of (92), we get

−e0x = x · e0 − x ∧ e0 . (93)

So,
e0x = −x · e0 + x ∧ e0 . (94)

Therefore,

x2 = (xe0)(e0x) = (x · e0 + x ∧ e0)(−x · e0 + x ∧ e0)

= −(x · e0)2 + x · e0x ∧ e0 − x ∧ e0x · e0 + (x ∧ e0)
2

= −(x · e0)2 + (x ∧ e0)
2

= 0 , (95)

where
x · e0x ∧ e0 − x ∧ e0x · e0 = 0 , (96)
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because x · e0 is a vector and x∧ e0 is a trivector of a 3-D subspace that acts as
a pseudoscalar, which then commutes with x · e0. We now define

x0 = x · e0 and ρx = x ∧ e0 , (97)

where we will solve for ρ in due time.
Anyway, we have that

(x · e0)2 = (x ∧ e0)
2 = ρ2x2 . (98)

Our goal now will be to rewrite all products in terms of e+ and e− instead e0.
Thus,

−4x · e+x · e− = ρ2x2 . (99)

Our choice for ρ will be
ρ = 2x · e+ . (100)

With this choice, then
x · e− = −x2x · e+ . (101)

Returning to (92), we get the conformal split of xe0

xe0 = x · e0 + x ∧ e0

= 2[ (x · e+)e− − (x · e−)e+ ] + x ∧ e0 (using (90))

= 2[ (x · e+)e− − (−x2x · e+)e+ ] + x ∧ e0 (using (101))

= 2x · e+e− + 2x2x · e+e+ + x ∧ e0

= 2x · e+e− + 2x2x · e+e+ + ρx (using (98))

= 2x · e+e− + 2x2x · e+e+ + 2x · e+x (using (100))

= 2x · e+(e− + x2e+ + x) , (102)

where x =
x ∧ e0
x · e+

.

The values x∧e0 and x ·e+ are referred to as the ’homogeneous coordinates‘
of x, which seems rather strange in that there is no representation of points in
our projective space in terms of coordinates in Rn+1. Anyway, all our proofs
here in projective and conformal geometry use coordinate-free methods.

The story of homogeneous coordinates is interesting and useful. Projective
geometry in 2-D used to be performed in the plane. Then, someone thought to
add coordinates to that plane, just like in analytic geometry. Then, someone else
got the very brilliant idea to raise that plane out of the x, y-plane and embed it
into x, y, z-space. Any plane in R3 would do, just so long as it doesn’t contain
the origin of coordinates. Since all the algebraic operations on the coordinatized
projective plane were just the operations of the Gibbs’s vector algebra, then
it was found that one could do the projective geometry of the plane using the
Gibbs’s vector algebra, without using the coordinates. That brings us to now.
We upgrade the Gibbs’s vector algebra with geometric algebra, which is not
only more elegant in 3-D, it generalizes well to n-D.
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Now it’s time to present a matrix version of the conformal split. Let

xe0 = ρX . (103)

Therefore,
X = e− + x2e+ + x . (104)

We can convert this equation to ‘matrix form’ by allowing arbitrary elements of
the geometric algebra as their entries. For example, x → xI, where I is the unit
2× 2 matrix, and

e− →
[
0 0
1 0

]
, e+ →

[
0 1
0 0

]
. (105)

Thus,

[X ] =

[
x x2

1 x

]
, (106)

which is Eq. (5.46).

At this point, I will jump to establish Eq. (5.26), which is

det[M ] =M̃M , (107)

where
M̃ ≡ (M∗)† , (108)

and where
M∗ ≡ e0Me0 . (109)

We’ll need some results in advance.

e0e1 = e1 ∧ e2 · e1 = e1 · e1 ∧ e1 = −e2 , (110a)

e0e2 = e1 ∧ e2 · e2 = e2 · e1 ∧ e1 = −e1 . (110b)

Then

e0e1e0 = −e2e0 = −e1 , (110c)

e0e2e0 = −e1e0 = −e2 . (110d)

First step, take this Eq. (109) and produce (with e20 = 1)

M∗ = 1
2e0[A(1 + e0) +B(e1 + e2) + C(e1 − e2) +D(1− e0)]e0

= 1
2 [A(1 + e0) +B(e0e1e0 + e0e2e0) + C(e0e1e0 − e0e2e0) +D(1− e0)]

= 1
2 [A(1 + e0)−B(e1 + e2)− C(e1 − e2) +D(1− e0)] . (111)

Now we take the reverse of this last equation:

M̃ = 1
2 [A(1 + e0)−B(e1 + e2)− C(e1 − e2) +D(1− e0)]

†

= 1
2 [A(1− e0)−B(e1 + e2)− C(e1 − e2) +D(1 + e0)]

= 1
2 [D(1 + e0)−B(e1 + e2)− C(e1 − e2) +A(1− e0)] . (112)
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So, with the conversion of M to [M ] according to (5.22):

[M ] =

[
A B
C D

]
, (113)

and

[M̃ ] =

[
D −B
−C A

]
, (114)

then

[M̃ ][M ] =

[
D −B
−C A

] [
A B
C D

]
=

[
AD −BC 0

0 AD −BC

]
= det[M ]

[
1 0
0 1

]
. (115)

My next and last foray into this current paper, at least for the time being,
is to justify Eq. (5.59). We begin with Eq. (5.10):

x′ = Gx(G∗)−1 , (116)

which gives us
GXĜ = σX ′ , (117)

which is Eq. (5.48). Using (102), we get that

G(e− + x2e+ + x)Ĝ = σ[ e− + x′2e+ + x′ ] , (118)

where x′ = g(x).
Without loss of generality, we can express G in the form

G = Ae+e1 +Be+ + Ce− +De−e1 , (119)

where the values of A,B,C,D are in Gn, but this form of G has the virtue that
we can still use the matrix form of (113). So, let

[G ] =

[
A B
C D

]
, (120)

Now, with respect to (119), what is G†?

G† = A†e1e+ +B†e+ + C†e− +D†e1e−

= A†e−e1 +B†e+ + C†e− +D†e+e1

= D†e+e1 +B†e+ + C†e− +A†e−e1 , (121)

Before we calculate G∗, let’s get some basic results down first.

e1e0 = −e0e1

e2e0 = −e0e2 , (122)
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e0e+e1e0 = e0[
1
2 (e1 + e2) ]e0

= e0e0[
1
2 (e1 + e2) ]

= e+e1 , (123)

e0e+e0 = −e0e0[
1
2 (e1 + e2) ]e0

= − 1
2 (e1 + e2)

= −e+ . (124)

So,

G∗ = e0Ge0

= e0[Ae+e1 +Be+ + Ce− +De−e1 ]e0

= e0A
†e0(e0e+e1e0) + e0B

†e0(e0e+e0) + e0C
†e0(e0e−e0) + e0D

†e0(e0e−e1e0)

= A∗(e0e+e1e0) +B∗(e0e+e0) + C∗(e0e−e0) +D∗(e0e−e1e0)

= A∗e+e1 −B∗e+ − C∗e− +D∗e−e1 , (125)

Therefore

[G†] =

[
D† B†

C† A†

]
and [G∗] =

[
A∗ −B∗

−C∗ D∗

]
, (126)

Now,

[GG†] =

[
A B
C D

] [
D† B†

C† A†

]
=

[
AD† +BC† AB† +BA†

CD† +DC† CB† +DA†

]
, (127)

but we have the requirement expressed in (5.55) that

GG† = |G |2 , (128)

thus,

[GG† ] = |G |2
[
1 0
0 1

]
. (129)

We also need to know that

[ Ĝ ] =

[
D̂ B̂

Ĉ Â

]
. (130)

On converting (118) to matrix form, we have that

[G ][ e− + x2e+ + x ][ Ĝ ] = σ[ e− + x′2e+ + x′ ] , (131)

or

[GXĜ ] = σ

[
g(x) [ g(x) ]2

1 g(x)

]
. (132)
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And finally,

[GXĜ ] =

[
A B
C D

] [
x x2

1 x

] [
D̂ B̂

Ĉ Â

]
=

[
(Ax+B) (Ax2 +Bx)
(Cx+D) (Cx2 +Dx)

] [
D̂ B̂

Ĉ Â

]
=

[
(Ax+B)D̂ + (Ax2 +Bx)Ĉ (Ax+B)B̂ + (Ax2 +Bx)Â

(Cx+D)D̂ + (Cx2 +Dx)Ĉ (Cx+D)B̂ + (Cx2 +Dx)Â

]
=

[
AxD̂ +BD̂ +Ax2Ĉ +BxĈ AxB̂ +BB̂ +Ax2Â+BxÂ

CxD̂ +DD̂ + Cx2Ĉ +DxĈ CxB̂ +DB̂ + Cx2Â+DxÂ

]
=

[
(Ax+B)(D̂ + xĈ) (Ax+B)(B̂ + xÂ)

(Cx+D)(D̂ + xĈ) (Cx+D)(B̂ + xÂ)

]
. (133)

6 Conclusion

Hopefully, soon I can return to this paper and flesh it the rest of it.
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