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Abstract

This paper contains my personal notes on the paper Projective Geometry
with Clifford Algebra.1 My comments are meant 1) to clarify certain parts
of the exposition (especially for readers, like myself, who are not experts
in projective geometry), 2) to fill-in some of the steps in the mathematical
derivations, and 3) to report on a few mistakes that remain in the preprint
version of the paper. As a word of warning, this paper will make no
attempt to teach the fundamentals of geometric/Clifford algebra, though
it will spend some time enhancing the discussion on it presented in the
paper.

1 Introduction to the series

This paper is meant to be the first of a series of three papers on projective
geometry papers written by D. Hestenes and his coauthors. These papers were
published in the late 1980s and early 1990s.

I have to confess that I have had an extraordinarily hard time understand-
ing the simplest things about projective geometry. I think that I have finally
penetrated at least the outercasing of the subject by working through the book
by H. L. Dorwart The Geometry of Incidence [2]2 But even his approach was
too difficult to understand until I took the implicit advice of David Hestenes to
rewrite it all in the Gibbs’ vector algebra:

Note, for example, that the relation of Ã to b and c in (4.2) is exactly
that of the conventional vector cross product. Consequently, the
mathematical language used here articulates smoothly with standard
vector algebra of Gibbs so widely used in physics [10]. [Proj. Geom.
with Cliff. Alg. p. 39]

I wrote a number of papers that followed Dorwart’s presentation, though
recast in my version of coordinate-free Gibbs formulation (well, mostly). I have

1David Hestenes and Renatus Ziegler, Acta Applicadae Mathematicae, Vol. 23, (1991)
25–63.

2H. L. Dorwart, The Geometry of Incidence, Prentice-Hall (1966).
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re-presented my formulation of how to represent points in the projective plane
as vectors and lines in the projective plane as planes in R3, as the unique inter-
section of some oriplane with the projective plane.

However, if you’d prefer to skip all that, then my commentary on the
Hestenes-Ziegler paper starts at Section 12.

2 Clifford algebra vs. Geometric Algebra

The mathematician William Kingdon Clifford (1845–1879) invented or rein-
vented what we call Clifford algebra as an extension of Grassmann algebra.
Clifford himself called it ‘geometric algebra’. In the decades after Clifford’s
death, his system ended up in relative obscurity, until its later matrix formula-
tion version, which was used by physicists in quantum mechanics. Then onto
the scene came David Hestenes, who singled handedly gave the subject a re-
birth in a wide variety in physics topics. However, his connection to Clifford
algebra was bridged by the wonderful book of Marcel Riesz that reformulated
the classical equations of Maxwell into Clifford algebra. However, following the
lead of Hestenes, many other physicists and mathematicians have pushed the
development of applied geometric algebra, and recently with huge applications
to computer science.

According to Hestenes, the label ‘geometric algebra’ should be restricted to
a Clifford algebra in which the scalars are strictly real numbers. In a general
Clifford algebra, the scalars can be any field. They are usually taken as the field
of complex numbers.

Hestenes has done quite well in his decades-long research program to refor-
mulate the foundations of physics by replacing matrices, quaternions, complex
numbers, and scalar tensors by the appropriate counterparts in some geometric
algebra. It doesn’t take long in investigating geometric algebras to find an abun-
dance of objects within the algebra that have squares of −1. Hence, Hestenes
has added to his research program that there shall never be accepted any for-
mal (or rather, uninterpreted in the geometric sense) square roots of −1. His
philosophy has been that if one gets lazy and just finds one’s square roots of
minus one in the field of complex numbers, then one maybe missing a wonderful
opportunity to find a deeper meaning to the square root of minus one in the
form of some nonscalar element of the geometric algebra.

Now, with all that said about the distinction between Clifford algebra and
geometric algebra, we shall not in this paper, or series of papers, make much
distinction between them. So, why did I include this explanation? Because I
know how confused I’d be if I were new to this subject but didn’t know how
they are related to the subject of projective geometry with Clifford algebra.
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3 Introduction to this paper

At this time, I intend to go only about halfway through the Hestenes-Ziegler
paper. That should provide the reader with some introduction to the entire
paper and take the development of the subject using geometric algebra up to
Pascal’s Theorem, which is basically the Theorem of Desargues placed into an
ellipse.

4 The unreasonable effectiveness of projective
geometry

In my opinion, the 2-d projective plane is the most difficult and confusing ‘sim-
ple’ subject ever invented in the halls of mathematics. Let’s take an example.
Consider the following planar figure of the Pappus construction:

Figure 1. One version of Pappus’s hexagonal planar figure. This representation

hides that fact that to use projective geometry on it, one must embed the figure

in a space of at least one dimension higher, which will be made clear later. But

once you realize how the algebra of 3-d is used to prove theorems of figures in 2-d,

the explicit representation of this embedding is not necessary, hence, the figures are

displayed in 2-d to be easier on the eye, I suppose.

I’ll state Pappus’s theorem later, when we get to it in earnest. For now, it’s
obvious that it concerns a figure in a plane, or in 2-d. It’s possible to prove this
theorem in Euclidean geometry in 2-d. But, the form of projective geometry
we’re going to use in this paper doesn’t do that. Projective geometry takes that
plane, with figure inside, and places it inside a space of one dimension higher,
so, in this case, in a 3-d space. Now, I’m going to call this 3-d space R3. The
advantage of this space is that it is the well-known vector space that assigns
coordinates to every point in the 3-d space. And I use the term ‘vector space’
quite specifically. In this vector space, we have a special point, called the origin
which is the zero vector of the space, i.e., 000, such that for all vectors v ∈ R3

v +000 = v . (1)
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Of course, the origin is given the coordinates (0, 0, 0).
The magic happens when we embed our planar figure in R3 so that it doesn’t

contain the origin. There are two basic reasons for this. First, many of the
proofs used in the projective plane use the vanishing of products of vectors (to
get zero). Now, we want this resulting zero to indicate something specific about
the relative geometry of the two or more vectors, not just the happenstance that
one of the vectors is the zero vector, which gives us a zero, regardless.

Second, by placing the origin outside the plane of the figure, we are able to
move from non-homogeneous coordinates to homogeneous coordinates.

I’m sure that projective geometry purists will complain that I am clouding
the waters by embedding the projective plane into R3, but I have my reasons.
My first reason is that so much of the literature out there uses coordinates to
make proofs. All the proofs in Dorwart’s book use coordinates. Next, every time
you read the term ‘homogeneous coordinates’, you are dealing with coordinates
of vectors and lines in R3.

By the way, the mystery of ‘homogeneous coordinates’ is explained below,
and it’s not all that hard to grasp. But it should be noted that in any coordinate-
free proof, ‘homogeneous coordinates’ are not useful at all. And the proof af-
forded with the help of geometric algebra will not use coordinates at all.

Back to Figure 1. So, in the plane we have points and lines, and we are
interested in the incidence relations among these objects. So, we’re going to
organize our treatment of projective geometry in three Big Steps.

Big Step I) In answer to the question of what are the objects of our concern
in projective geometry, we shall at first refer to these objects in their simplest
terms, as sets of points in R3. Of the unimaginably large number of subsets of
points in R3, the only ones we will be interested in, in any precise sense are 1)
single points, 2) lines, 3) planes, and 4) all of 3-d space. I shall refer to these
four kinds of objects as proper objects. Except for the point, all other proper
objects have infinite extent.3

Big Step IIa) The two main operations we will define on these proper
objects are more or less set-theoretic operations of meet and join. Let A and B
be any two proper objects in R3, then the join of these two objects, represented
as A∧B, is the smallest proper object that setwise contains both A and B. For
example, if A and B are both points in the projective plane, then their join is
the unique line of the projective plane that contains them, or rather, that they
both lie on.

Big Step IIb) Now for the meet. Let A and B be any two proper objects
in R3, then the meet of these two objects, represented as A ∨ B, is the largest
proper object that is setwise contained in both A and B. Hence, the meet of
two proper objects is very much their setwise intersections. An obvious first
example is the meet of two lines. Lines are proper objects and their meet must

3It might be tempting to refer to some line segment in a particular planar figure, but such
language is imprecise. In that case, what we are really dealing with is the line that contains
the line segment.

4



be a proper object, and so it is. We say that, ‘Two distinct coplanar lines meet
at a point’. Likewise, two (distinct) planes meet in a line. Why is that? Because
the line of intersection of the two planes is the largest subset of each plane that
is contained in each plane. For contrast, any point in the intersection of the line
of intersection of two planes is, of course, in the intersection of the two planes,
but it is not the meet of the two lines.

Big Step IIc) So, why do we need both the meet and the join operations?
We need them both to cover both notions of incidence in projective geometry.
One notion of incidence is that of lines being incident at a point, say, and we
have the meet operation for that. The other notion of incidence is that of
points being incident on a common line, say, and we have the join operation for
that. Desargues’s famous theorem can be briefly stated as: When certain lines
meet at a certain point, certain other points are joined on a certain other line.
Although I just used highly specific examples to illustrate the meet and join
operations, I need to repeat that the operations are to be defined on any two
proper objects. The theorems of projective geometry of interest to us in this
paper can be stated in terms of meets and joins of points and lines in a plane.4

Big Step IIIa) Okay, now that we know what the proper (or allowed)
objects of discourse are, and we know the incidence concepts on these objects,
and we have adopted symbols to represent these incidence relations on these
proper objects, are we able to formulate an algebraic representation of these
objects by which we can perform algebraic manipulations on them that can
help us prove the theorems of projective geometry? The answer is yes. Dorwart
and many other authors use the method of ‘homogenous coordinates’, in which
all the points in space have coordinates like (a, b, c), and then operations of the
Gibbs’s vector algebra are used, even if they aren’t described explicitly as such.
Below, I prove the Pappus theorem by using Gibbs’s vector algebra, but with
no explicit adoption of coordinates to the vectors involved.

Big Step IIIb) After that, we turn to the real focus of this paper, which
is how Hestenes and Ziegler used geometric algebra to represent these proper
objects, so as to facilitate proving theorems with this mathematical system.
Now, geometric algebra is superior to Gibbs’s vector algebra in two main ways.
First, it is an associative algebra that is generally easier to manipulate alge-
braically. Second, with respect to the theorems in the projective plane, we need
to represent oriplanes5 by some algebraic means. In the Gibbs’s vector algebra,
this is doable, but we are required to represent oriplanes by the cross products
of two vectors in the plane.6 However, though this is doable, it is not elegant.

4That the incidence theorems of projective geometry can be stated in terms of meets and
joins, doesn’t mean that they will be stated as such in the literature. For example, my book
on projective geometry by H.S.M. Coxeter only mentions the word ‘join’ a few times and not
as a formal operation. According to the book’s index it doesn’t mention ‘meet’ at all, but
it mentions it on page 5, but not as a formal operation. Dorwart’s book seems to make no
formal use of them either.

5An oriplane is a plane in R3 that contains the origin.
6The oriplane needs some vector normal to it to represent it. This normal vector is usually

derived from a cross product and two distinct vectors in the oriplane.
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In the geometric algebra, we can represent a plane more directly by a bivector
that shares the same ‘direction’ in space as does the plane. Secondly, we can
easily generalize the geometric algebra to higher dimension, whereas, we cannot
easily generalize the Gibbs’s vector algebra to higher dimensions (because the
cross product of vectors does not generalize easily), unless you want to think of
geometric algebra as that generalization, which makes sense.

5 Introduction: Relating points in the projective
plane to vectors in R3

The subject of projective geometry is vast. The purpose of this paper is to
introduce only enough rudiments of the subject so as to get a feel for the subject
and then to use this information to solve a real problem, namely, the Theorem
of Pappus, also known as Pappus’s hexagon theorem, and similar problems in
later papers. More foundational proofs will be given in later papers when the
topic of finite geometries comes up.

Now, in the abstract I promised to introduce homogenous coordinates, and I
will, but only to connect their properties to Gibbs’s vector algebra. What makes
projective geometry work is a one-to-one correspondence in 3-space between
planes and lines on the one hand and lines and points, respectively, on the
other.

Here’s the basic setup:

1) Take the planar figure you want to analyze (that naturally sits in R2) and
embed it into R3 such that the origin (0, 0, 0) is not in the plane. This structure
is referred to as RP2. Let’s choose a particular projective plane and call it Σ.

2) Note that there is a 1-1 correspondence between lines through the origin and
points on Σ (i.e., where they intersect).

Figure 2. The 1-1 correspondence between lines through the origin, in this case

represented by the vector V, and points on the plane Σ. The intersection point

of the line represented by the vector V and the plane Σ is the point P . What’s

important about the vector is not its length, but its direction in 3-space.
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Now, it turns out that for projective geometry we don’t need to describe the
points in Σ as unique vectors from the origin to Σ. All that is needed is to find
any vector along the line connecting the origin and the point in Σ. This will be
proved later on.

Also note that there is a 1-1 correspondence between planes that contain
the origin (which I refer to as oriplanes7) and lines in Σ. Thus, to test if three
points in Σ are collinear, all we have to do is prove that the three points each
correspond to three lines in some oriplane, which is easy to do with Gibbs’s
vector algebra. Why is this? Because, if the three points lie simultaneously on
two distinct planes, they must lie on the intersection of the two planes, which
is a line.

Figure 3. The 1-1 correspondence between lines through the origin, in this case

represented by vectors W, V, and points Q, P , respectively, on the (projective)

plane Σ. The oriplane OP is the unique plane through the origin containing the

‘lines’ W and V. The orientation in 3-space of the plane OP can be represented

by the normal vector N to the plane OP , given by N = V ×W. What’s

important about this vector is not its length, but its direction in 3-space.

So, what is the secret to this mysterious replacement of lines in the plane
R2 with homogeneous coordinates in R3? Simply this: The generic line in R2

with standard (non-homogenous) form

Ax+By + C = 0 , (2)

has been replaced by the line in RP2 Σ, with generic homogeneous form

Ax+By + Cz = 0 . (3)

7Of course, our oriplanes have no resemblance to the Japanese origami planes.
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So, how is this done? Imagine we have an oriplane OP with its normal vector N
having its base point at the origin. Imagine also that we have any other nonzero
vector, say X, in the same plane with its base point at the origin. Then the dot
product of these two vectors is zero, for they are orthogonal to each other, i.e.,

N ·X = 0 . (4)

Now, imagine parallel transport of X to any other place in OP , and call it
X′. The wonderful thing is that by parallel transporting X from the origin, we
have to move its base point and its end point by the same amount, call it D.
Therefore, with 0 = (0, 0, 0) and X = X− 0,

X′ = (X+D)− (0+D) , (5)

where, because of the translation away from the base point at the origin, X′ is
no longer a ‘proper’ vector with coordinates, but is now an affine vector with
components. By a ‘proper’ vector I mean a vector whose base point is always
at the origin. An affine vector can have its base point anywhere. So, if we dot
this affine vector by N, we get

N ·X′ = N · (X+D)−N · (0+D)

= N ·X+N ·D−N · 0−N ·D
= N ·X = 0 . (6)

So, what we’ve shown is that the normal to a plane is orthogonal to every vector
in the plane, and to every line in the plane, and to every line segment in the
plane.

Going back to Figure 3, let us regard the vector X as the vector going from
point P to point Q, and let it have components

X =

xy
z

 . (7)

Now let N be the normal to oriplane OP ,8 having coordinates (or components,
since it doesn’t matter in this case)

N =

AB
C

 . (8)

The components of vector X have, so far, only one constraint on them, given
by Eq. (4), therefore,

N · x = [A,B,C]

xy
z

 = 0 , (9)

8Actually, we can rescale this normal by any nonzero factor and, for the purposes of
projective geometry, it’s still ‘the’ normal.
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which gives us Eq. (3). Thus, Eq. (3) represents a line in the oriplane OP that
goes through the origin and is parallel to line segment QP .

We’re now at the point where we can set down the two building blocks of
incidence geometry from the projective geometry viewpoint:

1) Given three points in the projective plane, do we have a simple test to deter-
mine if they are incident with one line?

2) Given that all distinct pairs of lines in the projective plane intersect in a
point, do we have a means of representing that intersection point in terms of
the points on the two lines?

We’ll deal with the first question now.
Figure 4 is an extension of Figure 3 by adding the named point R to Σ. It

looks like it lies on the same line that contains points P and Q, but we need a
test for this. These three points are collinear if and only if they lie on the line
of intersection of planes OP and Σ.

Now we make a critical simplification. We’re going to treat the points P , Q,
and R as the tips of vectors in R3 with base points at the origin 0.

Figure 4. Compared to Figure 3, we’ve added the point R in the projective

plane Σ. We look for a means to determine algebraically if the three points

P , Q, and R are collinear.

If points P , Q, and R are collinear, then vectors P , Q, and R lie in the same
oriplane, namely OP , in which case, every one of those vectors is orthogonal to
any normal to the plane. We can find a normal vector to OP by taking the cross
product of any two of those three vectors, such as R × Q or R × P or P × Q,
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etc.9 Then we have that

P · (R×Q) = Q · (R× P ) = R · (P ×Q) = 0 . (10)

It may seem at this point of the discussion a bit odd not to use boldface for
vectors, such as

P · (R×Q) = Q · (R×P) = R · (P×Q) = 0 , (11)

but it’s best to learn to do without that affect because the standard literature
does not use it. Hereafter, in this first paper, I’ll use it at times.

Figure 5. Compared to Figure 4, we’ve added the points S and T in the pro-

jective plane Σ, which lie in a different oriplane than OP , which we’ll call OP ′

(not shown to reduce clutter). Lines ST and PQ will meet at point R.

Now, how do we find the point of intersection of two distinct lines in the
projective plane Σ? Refer now to Figure 4. Let R be the point of intersection
of line PQ and ST . But how do we represent point R algebraically in terms
of the given information of points P , Q, S, and T? Well, this being projective
geometry, not Euclidean geometry, we are only concerned with determining the
direction of R in R3. For that limited purpose, all we need is any vector on the
line 0R.

The key to finding the algebraic expression that will give us a representation
of the direction of the point R is first to realize that the line 0R is along the

9We can also take these cross products in their opposite orders, but introducing a minus
sign won’t matter, since we are trying to get an inner product of zero, anyway. And minus
zero is the same as plus zero.
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line of intersection of the two oriplanes OP and OP ′, and second, to realize
that we can find that direction from taking the cross product of the normals to
those two oriplanes. (The line of intersection of two planes is orthogonal to the
normals of both planes, hence, the cross product of those normals.) Thus, the
‘projective location’ of the point R is given by

R ∼ (P ×Q)× (S × T ) . (12)

If we were to write this equation in terms of 3-space vectors, we would get

R = λ(P×Q)× (S×T) , (13)

where λ is some unknown nonzero real number. However, we don’t need to know
the value of λ to answer the kind of questions we will encounter in incidence
geometry in this series of papers. Hence, we will confidently write the ‘projective
location’10 of the point R as given by (effectively setting λ to unity), thus

R = (P ×Q)× (S × T ) . (14)

One last point to make in this section. There is a unique oriplane in R3 that
is parallel to Σ in the Euclidean sense. Call this plane the ideal plane. However,
we will not make much use of this plane in this series of articles.

6 Last detours before Pappas’s Hexagonal
theorem

Before proving Pappas’s Hexagonal theorem, we need 1) to add a few definitions
for use in the series and to make contact with the literature; 2) to review (briefly)
those few aspects of inner products and determinants that we’ll use repeatedly in
this series to make actual calculations to solve our problems; and 3) to introduce
the compact ‘bracket’ notation. This and the next few sections will accomplish
this task. Let’s begin.

Definition 1:
Projective Geometry is the area of mathematics concerned with the invariants
of figures under projective transformations, in particular, central projections.

So, what are these invariants of figures under projections? First, what are
the figures? The figures, for our restricted purposes, are planar figures of lines
and points. The invariants are 1) the indicated points in the given plane, 2) the
lines, and 3) the incidence relations between lines and between points on lines.

10I coined this term.
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Thus, if two lines are incident in the figure, they are incident in the projection.
For our purposes, we consider the projections to be between one plane sitting
in 3-space to another plane in 3-space, or a sequence of such projections.

Definition 2:
A collineation is a bijection from one projective space to another that preserves
incidences.

Definition 3:
Two distinct lines meet (symbolically ∨) at a point, and two distinct points are
joined by (that is, lie on) a line (symbolically ∧). Thus, if ℓ1 and ℓ2 are two
lines that meet at point p, we can write: p = ℓ1 ∨ ℓ2. And if p1 and p2 are two
points that lie on line ℓ, we can write: ℓ = p1∧p2. Clearly, once ℓ is determined,
any two distinct points on that line will have meet equal to ℓ.

.

Projective geometry comes in two flavors: Synthetic and Analytic. In the syn-
thetic version, the subject begins with a statement of the axioms the geometry
obeys, and it leave the terms point and line as undefined (primitive) terms. It
also doesn’t use coordinates, but, rather, proceeds similar to how synthetic Eu-
clidean geometry is founded on the existence of points and lines and incidences,
etc.

Analytic Projective geometry begins typically with F3, where F is a field.
Our field of choice in this paper is the real numbers.

Besides a knowledge of some linear algebra and Gibbs’s vector algebra, the
rest of the mathematical preparation the reader will need to follow the proof of
Pappus’s hexagonal theorem is begun in Chapter 4.

7 Homogeneous Coordinates

First, a little history. The ancient Greeks knew that the conic figures can be
obtained by intersecting a plane with a cone. Later, with the idea of projections
came the realization that distances and angles are generally not preserved. What
is preserved, then? Incidence relationships are. Any two distinct points in a
plane determine a line. But the relationship between lines is not so perfect: Any
two nonparallel lines in a plane meet at a single point. However, in Euclidean
geometry, parallel lines never meet. This seems like a sort of spontaneously
broken symmetry between points and lines in a plane.

If we could fix this defect somehow, then there would be a perfect symmetry
between theorems about incidence relationships about points and lines in a
plane. In other words, to force a duality on the points and lines in a plane
so that all theorems about them remain true when we interchange the words
‘point’ and ‘line’ is to adopt the convention that all parallel lines in a given
direction meet at a single point infinity.

Now imagine having a plane in R3 with z value unity. That is, the plane z =
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1. Every line in that plane can be expressed as the set of points of intersection
of the z = 1 plane with some plane through the origin (0, 0, 0). The general
equation that describes such a plane (i.e., an oriplane) is

a1x+ a2y + a3z = 0 , (15)

where a1, a2, a3 are real numbers. This equation is said to be homogeneous
because when all its constant terms are collected into one lumped term, that
term is zero, which is true if and only if the plane contains the origin.

At this point in the development, we change gears completely by adopting the
methods and notations of Gibbs’s vector algebra. (Since this paper assumes the
reader is already familiar with this algebra, we won’t go into a deep presentation
of it here.) In this algebra, a vector is a directed line segment from a base point
to its tip. The angle between any two vectors can be established by calculating
the dot or inner product between the vectors.

Say we have two free nonzero vectors a and b in 3-space, and we want to
find the angle between them. How do we do this? We bring their base points
together (at any convenient point in space, since it doesn’t matter) and then
compute their dot product:

a · b = |a| |b| cos θ , (16)

where θ is the angle between the two vectors. When this angle is π/2, the cosine
of the angle is zero and (16) becomes

a · b = 0 , (17)

in which case a and b are perpendicular to each other.
We can express Equation (15) in vector form this way

a · x = 0 , (18)

where x is a vector (with base point at the origin) perpendicular to the vector
a, which also has its base point at the origin. The locus of all points x in R3

defined by (18) is the oriplane perpendicular to the vector a.11

The whole point of homogeneous coordinates is to enforce a one-to-one cor-
respondence between the points on the projective plane and the vectors that
start at the origin and end at the points on the plane. This is why I refer to
points as vectors and vice versa.

There are two ways to proceed at this point. One way is to explicitly adopt
coordinates to prove theorems in projective geometry by choosing ones easy for
computations, such as (0, 0, 1) or (0, 1, 0) , etc. We lose nothing in generality
by choosing such coordinates because all Pappus figures are projectively equiv-
alent.12 And now it is obvious why we choose the projective plane to have z
coordinate unity.

11To ensure that the origin is included in this locus of points, giving us the entire oriplane,
we must insist that the zero vector is orthogonal to every vector.

12In this concept I include the great freedom allowed to draw the figure in the first place.
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The other way to proceed is to leave coordinates as implicit and just use the
power of dot and cross products on arbitrary points in the projective plane, as
is the procedure in this paper. On the other hand, Dorwart used coordinates
for his proofs, whereas I’ll use the noncoordinate method. Either way, it’s still
just the Gibbs’s vector algebra adapted for use in projective geometry.

Two questions might occur to the reader at this point. The first is, Why
we need the projective plane to have z coordinate unity if we’re going to ignore
the explicit use of coordinates in the latter way to do projective geometry? The
second question is, Why can’t we leave the origin in the projective plane, rather
than embed the plane into a larger space?

In answer to the first question, If we aren’t going to assign particular co-
ordinates to points in the projective plane, there really is no need to use the
canonical construction of the plane with z coordinate equal to 1. In this case,
all we need is that the projective plane not include the origin, or put another
way, that the origin is not in the projective plane. And that is why projective
geometry adds another spatial dimension to the problem.

But surely there are proofs of Pappus’s theorem that only use the 2-D plane
and not 3-space, right? Right. I’ve seen proofs using Euclidean geometry, and I
invented a proof using isotropic spinors in the plane. I can easily imagine a proof
using geometric algebra in the plane. So why do we embed the Pappus planar
figure in 3-space? You might say, We do so, so we can get a better perspective
on the problem. And, humor, aside, this is quite literally the case.

One reason to embed the projective plane into a space of higher dimension is
to deal more effectively with those nasty ‘points at infinity’, and I’ll get to that
issue later. The other reason we do this is to avoid irksome special conditions
that we’d have to be watchful for if the origin were inside the plane, and which
are never a problem if the origin is outside the plane. And this is a nice segue
that leads us to a full presentation of the technical aspects of how to represent
line intersection and collinearity in terms of the Gibbs’s vector algebra.

8 Technical Preliminaries

Let’s get technical with a little vector algebra and linear algebra now in R3,
as well as a review of the previous sections. In the projective plane every pair
of distinct lines intersect, or meet, at a unique point. If the lines are parallel,
they meet at a point at infinity. Otherwise, they meet at a finite point, just like
in Euclidean geometry. Every line in the projective plane is the intersection of
a unique plane through the origin and the projective plane. Henceforth, we’ll
refer to the projective plane as Σ.

Every plane through the origin can be uniquely defined (up to a sign) by its
unit normal vector, call it n, where n · n = 1. The equation that defines the
locus of points x in space that are in the plane perpendicular to n is given by

n · x = 0 . (19)
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However, because (19) is homogeneous, we can be more general in our charac-
terization of this plane by an arbitrary nonzero rescaling of n. So, let λ be any
nonzero real number, and let a = λn, then by multiplying (19) through by λ,
the equation can be equivalently recast as

a · x = 0 . (20)

Now, so long as this vector a is not normal to Σ, the plane normal to a will
intersect Σ in the Euclidean sense. So, say there are two distinct lines in Σ, L1

and L2, say, that intersect at point p. Then there are two distinct plane Σ1 and
Σ2 through the origin that intersect Σ in lines L1 and L2, respectively. (Consult
Figure 5.)

Figure 6. Line L1 in oriplane Σ1 meets line L2 in oriplane Σ2

(not shown to reduce clutter) at point p.

Let Σ1, Σ2, and Σ, be given by, respectively,

a1x+ a2y + a3z = 0 , (21a)

b1x+ b2y + b3z = 0 , (21b)

c1x+ c2y + c3z = d , (21c)

where d and all the coefficients are real numbers, and in particular, d is nonzero.
Or, expressed in matrix forma1 a2 a3

b1 b2 b3
c1 c2 c3

xy
z

 =

00
d

 . (22)
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The simultaneous solution to these equations gives us the exact point p̂ in
Σ, namely,

p̂ =

p1p2
p3

 =
d

detM

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 , (23)

where M is the coefficient matrix in (22), and its determinant is nonzero:

M =

a1 a2 a3
b1 b2 b3
c1 c2 c3

 . (24)

Now, we don’t need the exact point p̂ in Σ. We only need the direction of p̂ to
characterize it for our purposes. Any vector along the ray defined by p̂ will do.
To that end, we set

p =

b1c2 − b2c1
a2c1 − a1c2
a1b2 − a2b1

 , (25)

where we have ignored nonzero factors of this vector that appeared in (23).
The reader might suspect that, just as the vector13 a = [a1, a2, a3]

T is per-
pendicular to Σ1 and vector b = [b1, b2, b3]

T is perpendicular to Σ2, that vector
vector c = [c1, c2, c3]

T is perpendicular to Σ, and this is correct. Let’s prove it.
Let X = [X1, X2, X3]

T be some particular point that satisfies (21c), that is,
is a point on Σ, and let x = [x1, x2, x3]

T be any other point on Σ. Now, since
X and x are both points in Σ then their difference is a vector lying in the plane
Σ. So, substitute X and x into (21c) and subtract the resulting two equations
to get

c1(X1 − x1) + c2(Y2 − y2) + c3(X3 − x3) = 0 . (26)

But this equation can be rewritten as

c · (X− x) = 0 . (27)

But since X − x is an arbitrary vector in Σ and c is normal to it, then c is
normal to Σ.

A useful feature of the determinant of a square matrix is that the effect of
swapping any two rows of the matrix will only multiply the resulting deter-
minant of the new matrix by −1. Therefore, any sequential even number of
such swaps with leave the value of the resulting determinant unchanged, and
any odd number will multiply it by −1. A cyclic permutation of the rows of a
3× 3 matrix is an even number of swaps and so will not change the sign of the
determinant.

Let’s cyclically permute the rows of M in (24), bringing the bottom row to
the top:

M ′ =

c1 c2 c3
a1 a2 a3
b1 b2 b3

 , (28)

13The superscript T means to take the matrix transpose.
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and the determinant of M ′ is

detM ′ =

∣∣∣∣∣∣
c1 c2 c3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ . (29)

Normally, the determinant is scalar-valued, but Gibbs’s algebra allows us to
write vector-valued determinants, like this one

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
= (a2b3 − a3b2)i+ (a3b1 − a1b3)j+ (a1b2 − a2b1)k , (30)

where i, j,k are the unit vectors in the directions of the x, y, z-axes, respectively.
Of course, a× b is the cross product of a and b, and is a vector orthogonal to
both of these vectors. Now, if we dot this through by some arbitrary vector c,
we get

c · a× b =

∣∣∣∣∣∣
c1 c2 c3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
= (a2b3 − a3b2)c1 + (a3b1 − a1b3)c2 + (a1b2 − a2b1)c3 . (31)

To resolve any ambiguity here, the expression c·a×b is always to be interpreted
as c · (a× b).

By straightforward calculations using (31), one can prove that

a · a× b = b · a× b = 0 . (32)

This last result is also known from linear algebra, which proves that the deter-
minant of any nontrivial n × n matrix is zero if any two rows have the same
components.

Lemma:
c · a× b = b · c× a = a · b× c . (33)

We now have an interpretation of (29) in terms of the dot and cross products
of vectors built out of the rows of the matrix M ′. We can generalize our claim
from linear algebra about when the determinant of a square matrix is zero. A
determinant is zero if and only if its rows are linearly dependent.14 A vector
is linearly dependent on a set of other vectors, if it can be written as a linear
combination of the other vectors.

14We won’t have to concern ourselves with the case when one of the rows is the zero vector,
because the zero vector (i.e., the origin) is not a point of the projective plane—by design.
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In the case of the three vectors, a,b, c, say that c is a linear combination of a
and b. We’ll view this linear dependence both algebraically and geometrically.
First, algebraically. Then we can write for some nonzero scalars α and β

c = αb+ βc . (34)

Then, applying (32),

c · a× b = (αa+ βb) · a× b = αa · a× b+ βb · a× b = 0 . (35)

Viewed geometrically, this means that c is in the same plane as determined
by a and b. Then, since a×b is orthogonal to the plane containing a and b, it
is orthogonal to c as well. That is, c · a× b = 0.

9 Line Intersection and Collinearity

Let a and b be distinct points in Σ. Then the plane through the origin that
contains these points intersects Σ in a line that contains points a and b. A
vector normal to this plane is the vector a×b. Thus the join of points a and b
in Σ, that is, the line ℓ containing them, is characterized briefly by a× b. The
set of points on ℓ is the locus of points x in Σ orthogonal to a × b. In other
words, x is ‘on the line’ ℓ if and only if

x · a× b = 0 , (36)

in which case we say that points x, a, and b are collinear in the projective sense.
“Now wait a minute!” I hear you say. “Didn’t you claim recently that an

entire oriplane orthogonal to the vector a× b is defined by Equation (36), not
just a point on a line?” To which I reply that that’s right, when regarding (36)
as an equation in R3. But now consider a ray from the origin to infinity in
that oriplane. It must intersect the line ℓ in some point. However, considered
projectively, every point on that ray is equivalent to that point of intersection
because they all share one critical distinction in R3, namely, they all share the
same direction in 3-space.

Definition: The triple scalar product of the three arbitrary vectors a,b, c shall
be given by a · b× c.

Now for the join of two lines in the projective plane. We’ve already seen
that a line in Σ is defined by two distinct points in Σ, and since the meet of two
lines in the projective plane is a point, we need four distinct points, two for each
line, to define this meet of the lines. Let x be this unique point of intersection
of these two lines, ℓ1 = a× b and ℓ2 = c× d. Since x lies on each line, it must
satisfy the two equations

x · a× b = 0 and x · c× d = 0 . (37)
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There is an obvious choice for the solution to this couple of constraints, and
that is

x = (a× b)× (c× d) . (38)

This solution for x is unique, up to arbitrary nonzero scale factor, because two
distinct lines can only intersect on a single point. And as a reminder, x as
computed by Equation (38) is said to be the ‘projective location’ of the point
x.

However, the triple cross product is not too convenient for calculations for
my tastes. Let’s employ the double cross product vector identity to reexpress it
more simply:

A× (B×C) = BA ·C−CA ·B , (39)

a result familiar to most calculus students. So, start with

(a× b)× (c× d) = −[(c× d)× (a× b)] , (40)

and then set
A → c× d, B → a, C → b , (41)

and then, using (39), (40) continues on with

(a× b)× (c× d) = −[(c× d)× (a× b)]

= −[a(c× d) · b− b(c× d) · a]
= b(c× d) · a− a(c× d) · b
= ba · (c× d)− ab · (c× d) . (42a)

However, vectors a and b don’t get all the glory. By a similar maneuver, we
can write

(a× b)× (c× d) = ca · (b× d)− da · (b× c) . (42b)

Hint:
A → a× b, B → c, C → d , (43)

and then use cyclic permuting of the vectors in the triple scalar products.

10 The Compact Bracket Notation

Convention in this subject employs a ‘bracket’ notation to make the equations
in projective geometry much easier write down and to comprehend. I whole-
heartedly endorse this practice. Let’s look at my take on them.

Look at Equations (42a) and (42b). They’re just vector equations in the
Gibbs’s algebra. But if we include every dot and cross product, the expressions
and equations would be full of distracting symbols that really aren’t needed.
The proof that they’re not needed is that we can define a bracket notation that
unambiguously does away with them.
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So how does this bracket notation work? So far, I have found only four
bracket types to use in proving theorems in projective geometry. They are

[a], [ab], [abc], [abcd] , (44)

where a,b, c,d are vectors/points in the projective plane. As is true in the
Gibbs’s vector algebra, all these expressions represent either scalars or vectors,
though vectors have two different interpretations in projective geometry: The
following three expressions

[a], [ab], [abcd] , (45)

are vector-valued, as given by the following definitions:

[a] ≡ the point a in the projective plane, (46a)

[ab] ≡ a× b represents a line in the projective plane, (46b)

[abcd] ≡ (a× b)× (c× d) represents a point in the projective plane. (46c)

In terms of the jargon already laid out, [ab] is the join of points a and b (i.e.,
the line containing a and b). And [abcd] is the meet of lines [ab] and [cd].
Whereas,

[abc] ≡ a · b× c , (47)

which, as a reminder, is the triple scalar product. We’ve already seen this quan-
tity to represent a determinant, with the properties

[abc] = [cab] = [bca] = −[bac] = etc . (48)

Of course, if any one of the triple scalar products in (48) is zero, they all are.
And the scalar product of three nonzero vectors is zero if and only if they’re
coplanar.

One final obvious point to make is that, based on (32), for all a,b

[aab] = [bab] = 0 . (49)

In the Pappus theorem, points in the figure are labeled with subscripts.
I could represent the point A1, for example, as [A1], but, in the interest of
minimality, I should go all the way and just write [1] for it. And this is allowable
so long as it doesn’t introduce an ambiguity.

I can also mix subscripted with unsubscripted points in a bracket. For
example, to claim that the three points A2, u, and A3 are collinear, all I need
write is15

[2u3] = 0 , (50)

which, of course, stands for

A2 · u×A3 = 0 . (51)

15For the time being, I will treat boldface and non-boldface vectors the same. Perhaps later
I’ll find a reason to distinguish them.
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Equation (39) for the double cross product can be recast as

[A]× [BC] = [B]A ·C− [C]A ·B
= [B][A] · [C]− [C][A] · [B] . (52)

Lastly, we look at some identities involving the triple cross product [abcd].
Remember that this is the meet point of the two lines [ab] and [cd]. In our
bracket notation, (40) becomes

[abcd] = −[cdab] . (53)

Note that [abcd] also changes sign if we transpose either a and b, or c and d.
And (42a) and (42b) become

[abcd] = [b][acd]− [a][bcd] (54a)

= [c][abd]− [d][abc] . (54b)

EXERCISE: An Identity

Start with [abcd] = [b][acd] − [a][bcd] and take the cross product of it on both
sides of the equation on the left with vector e = [e], to get16

[ab][ecd]− [cd][eab] = [eb][acd]− [ea][bcd] . (55a)

Now, dot (55a) with vector c = [c] on both sides to get

[cab][ecd] = [ceb][acd]− [cea][bcd] . (55b)

Lemma 1 (on the meet of distinct lines)
Let A,B,C,D be distinct points in the projective plane. Then

[ABCD] = B[ACD]−A[BCD] (56a)

= C[ABD]−D[ABC] . (56b)

Remember that [ABCD] is a vector/point and is equal to (A×B)× (C ×D)

Lemma 2 (on the collinearity of points)
Three distinct points A,B,C in the projective plane are collinear if and only if
[ABC] = 0.

More Practice

Let’s do some examples scalarizing vectors. Say we have the vector equation

A = λB + C , (57a)

16Hint: Remember that [abcd] is a cross product [ab]× [cd], so that [e]× [abcd] = [e]× ([ab]×
[cd]), so use the double cross product formula (52).
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where A,B,C are vectors and λ is a scalar. If we cross (57a) by, say, the vector
D on the right, we get

A×D = λB ×D + C ×D . (57b)

Now we can dot this last equation on the left by, say, the vector E to get

E ·A×D = λE ·B ×D + E · C ×D , (57c)

where, again, the expression A ·B×C is always to be interpreted as A · (B×C).
And, of course, we want to rewrite the last three equations into our bracket
notation, yielding

[A] = λ[B] + [C] , (58a)

[AD] = λ[BD] + [CD] , (58b)

[EAD] = λ[EBD] + [ECD] . (58c)

To demonstrate dotting a vector equation with a cross product, consider dotting
(57a) with D × E to get

A ·D × E = λB ·D × E + C ·D × E , (59a)

or, in bracket notation,

[ADE] = λ[BDE] + [CDE] . (59b)

A shorthand way to think about how we went from (58a) to (58c), was to
apply the operation of [E D] across (58a). And the alternative way to scalarize
a vector equation is to apply the following cross product [ DE], such as in going
from (58a) to (59b).

11 Theorem of Pappus

So far as I can tell, Pappus merely stated the following theorem, but never
proved it:

As shown in Figure 6, let there be two distinct lines in a plane, each having
three distinct points on them, A1, A3, A5 on one, and A2, A4, A6 on the other.
(A particular labeling of these points is quite arbitrary.) Then, the points of
the intersections (i.e., the meets) of the given pairs of interior lines (i.e., joins)
are collinear. That is, points u, v, w are on the same line.
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Figure 7. One version of Pappus’s hexagonal planar figure.

Proof of Pappus’s Theorem: STEP 1 TO THE PROOF: Collect the con-
straints.

As presented in the figure, u = A1A4 ∨ A2A3, v = A1A6 ∨ A5A2, and w =
A3A6 ∨A5A4, or, presented in our compact notation

u = [1423] , (60a)

v = [1652] , (60b)

w = [3654] . (60c)

Thus, we can recast the essence of the claim of the theorem in this form: Show
that

[uvw] = 0 , (61)

given that 1)

[135] = 0 , (62a)

[246] = 0 , (62b)

and given that 2)

[1u4] = 0 , (63a)

[3u2] = 0 , (63b)

[1v6] = 0 , (63c)

[5v2] = 0 , (63d)

[3w6] = 0 , (63e)

[5w4] = 0 . (63f)

STEP 2 TO THE PROOF: In order to show that [uvw] = 0, find expressions
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for u, v, w in terms of the given points.17

Thus, using (56a), we can solve for A1 = [1], A3 = [3], A5 = [5], respectively,
by solving for their projective locations, as follows:

[1] = [u4v6] = [4][uv6]− [u][4v6] , (64a)

[3] = [u2w6] = [w][u26]− [6][u2w] , (64b)

[5] = [v2w4] = [2][vw4]− [v][2w4] . (64c)

These can be rewritten as

[u][4v6] = [4][uv6]− [1] , (65a)

[w][u26] = [6][u2w] + [3] , (65b)

[v][2w4] = [2][vw4]− [5] . (65c)

Now we take the scalar product18 of the last three equations to get

α[uvw] = ([4][uv6]− [1]) · {([2][vw4]− [5])× ([6][u2w] + [3])} . (66)

where α = [4v6][2w4][u26]. Now, α ̸= 0 because none of its three factors is zero,
according to Lemma 2. To expand the RHS19 of this, we first distribute the
cross products. In doing so, we lose the term containing [426] because of (62b),
and the term containing [153] because of (62a).

Expanding, we get

[uvw] =̇ [423][uv6][vw4]− [456][uv6][u2w]− [453][uv6]

− [126][vw4][u2w]− [123][vw4] + [156][u2w] , (67)

where the overdot on the equal sign means that LHS of (67) is equal to the RHS
up to the nonzero scalar factor α. Ordinarily, such a condition is a truism, but
it works here since all we want to show is that is the RHS is zero, then so is also
the LHS, so that the nonzero factor α is irrelevant.

STEP 3 TO THE PROOF: Conform the vector constraints to use in the scalar
equation (67) and simplify in successive steps.

We observe that the terms in (67) are scalars, but the constraints we must
invoke to finish this proof are vectors. Thus, to consistacize them, the simpler
thing to do is to scalarize the vector constraints by either 1) crossing them with
one vector and then dotting that result with another, or else 2) by dotting them
with a cross product (that is taking their ‘scalar product’). In either case we
end up with a scalar in the form: x · y × z.

17There are many ways to go about doing this. The way I chose to do this might not be
the best way, but it worked.

18In this paper, scalar product means, when applied to three vectors, a, b, c, is [abc] =
[a] · ([b]× [c]).

19RHS means ‘right-hand side.’
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Now, I want to scalarize equations (65a)–(65c) in such a way so as to employ
as many of the constraints found in (63a)–(63f) as I can, because it’s by these
constraints that the Pappus figure is properly defined.20 Applying [2 3] to (65a),
we get

[2u3][4v6] = [243][uv6]− [213] , (68)

and then applying (63b), we have21

[243][uv6]− [213] = 0 . (69a)

Similarly, applying [1 6] to (65c) and then applying (63c), we get

[126][vw4]− [156] = 0 . (69b)

Lastly, applying [4 5] to (65b) and then applying (63f), we get

[465][u2w] + [435] = 0 . (69c)

Returning to (67), we see that, on factoring [u2w] out of the fourth and sixth
terms on the RHS, the two terms cancel each other because of (69b), leaving us
with

[uvw] =̇ [423][uv6][vw4]− [456][uv6][u2w]− [453][uv6]− [123][vw4] . (70)

By a similar process we see that the first and fourth terms cancel because of
(69a), leaving us with, after factoring and using (69c),

[uvw] =̇ − ([456][u2w] + [453])[uv6] = 0 . (71)

Thus
[uvw] = 0 , (72)

as we needed to show. ■

20In other words, it would be very strange to be able prove a fundamental result concerning
the Pappus figure without employing the information contained in the constraint equations
that define that figure.

21Since [3u2]=0 and [2u3]=-[3u2] then [2u3]=0.
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Now we’ve arrived at a discussion of the Hestenes-Ziegler
paper itself.

12 Section 2 of the paper: Geometric Algebra

Again, it’s not my purpose to reproduce all the basics of geometric algebra, but
rather to fill-in some of the less obvious steps. Thus, we start at Eq. (2.6) [p.29,
p.5]22

Let’s begin with a k-blade Mk = a1 ∧ . . . ∧ ak, where the ai’s are vectors.
The dagger operator reverses the ordering of the vectors in the wedge product,
thus

M†
k = ak ∧ . . . ∧ a1 . (73)

So, what’s the relation of M†
k to Mk? To help us answer this, we begin with a

lemma: the sum of integers from 1 to n is given as

n∑
j=1

= 1 + 2 + ·+ n =
(n+ 1)n

2
. (74)

Hence,

M†
k = ak ∧ . . . ∧ a1

= (−1)k−1a1 ∧ ak ∧ . . . ∧ a2

= (−1)(k−1)+(k−2)a1 ∧ a2 ∧ ak ∧ . . . ∧ a3

= · · ·
= (−1)(k−1)+(k−2)+···+1a1 ∧ a2 · · · ∧ ak

= (−1)k(k−1)/2Mk . (75)

Next, we have Eq. (2.13) [p.30, p.6]

a ·B ≡ ⟨ aB ⟩s−1 = (−1)s−1B · a (76)

where a is a vector and B = ⟨B ⟩s.

Before I start the proof, I want to state that the value of (−1)K for some
integer K is highly restricted, meaning that its value depends only on whether

22I’m providing the equation numbers for both the published version and the preprint
version, in that order.
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K is even or odd. Hence, we can often reduce a complex expression for K down
to an equivalent simpler expression.

a ·B = (a ·B)†† = ⟨ aB ⟩††s−1

= ⟨B†a ⟩†s−1 = (−1)s(s−1)/2⟨Ba ⟩†s−1

= (−1)s(s−1)/2(−1)(s−1)(s−2)/2⟨Ba ⟩s−1

= (−1)[s(s−1)+(s−1)(s−2]/2B · a

= (−1)(s−1)2B · a
= (−1)s−1B · a . (77)

An extra credit problem: Show that

a · (b ∧B) = a · bB − b ∧ (a ·B) , (78)

where B is a k-blade.

a · (b ∧B) = a · (b ∧ b1 ∧ b2 ∧ · · · bk)
= a · b b1 ∧ b2 ∧ · · · ∧ bk − a · b1 b ∧ b2 ∧ · · · bk

+ a · b2b ∧ b1 ∧ b3 ∧ · · · ∧ bk − · · ·
= a · bB − a · b1 b ∧ b2 ∧ · · · ∧ bk + a · b2 b ∧ b1 ∧ b3 ∧ · · · ∧ bk − · · ·
= a · bB − b ∧ [a · b1 b2 ∧ · · · ∧ bk − a · b2 b1 ∧ b3 ∧ · · · ∧ bk + · · · ]
= a · bB − b ∧ (a ·B) . (79)

Next, we have Eq. (2.19) [p.31, p.6] .

Ã ≡ AI−1 = A · I−1 = (−1)r(n−r)I−1A (80)

where A = ⟨A ⟩r and I = ⟨ I ⟩n.

A · I−1 = (A · I−1)†† = ⟨AI−1 ⟩††n−r = ⟨ I−1†A† ⟩†n−r

= (−1)n(n−1)/2(−1)r(r−1)/2⟨ I−1A ⟩†n−r

= (−1)n(n−1)/2(−1)r(r−1)/2(−1)(n−r)(n−r−1)/2⟨ I−1A ⟩n−r

= (−1)n(n−1)+r2−nrI−1A

= (−1)r(r−n)I−1A

= (−1)r(n−r)I−1A , (81)

where we used the fact that the expression n(n− 1) is always even and that the
overall sign of the exponent to (−1) doesn’t matter.

Next, we have Eq. (2.20) [p.31, p.7] and B = ⟨B ⟩s

A · (BI) = (A ∧B)I = (−1)s(n−s)(AI) ·B . (82)
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We’ll establish the first equality first.

A · (BI) = A · (B · I)
= ⟨A · (B · I) ⟩(n−s)−r

= ⟨A(B · I) ⟩(n−s)−r

= ⟨A(BI) ⟩(n−s)−r

= ⟨ (AB)I) ⟩n−(r+s)

= (A ∧B)I . (83)

Now for the second equality, using (2.19) to change the order of IB.

A · (BI) = (−1)s(n−s)A · (IB)

= (−1)s(n−s)⟨AIB ⟩n−r−s

= (−1)s(n−s)⟨ (AI) ·B ⟩n−r−s

= (−1)s(n−s)(AI) ·B . (84)

Next, we have Eq. (2.21) [p.31, p.7]

(A ∧B)˜ = A · B̃ = (−1)s(n−s)Ã ·B (85)

So,
(A ∧B)˜ = (A ∧B)I−1 = (−1)s(n−s)(AI) ·B . (86)

And then,
(A ∧B)I−1 = A · (BI−1) = A · B̃ . (87)

Next, we have Eq. (2.25) [p.32, p.8]

Given that
M ×N ≡ 1

2 (MN −NM) , (88)

show that
L× (MN) = (L×M)N +M(L×N) . (89)

Okay,

L× (MN) = 1
2 (LMN −MNL)

= 1
2 (LMN −MLN +MLN −MNL)

= 1
2 (LM −ML)N +M 1

2 (LN −NL)

= (L×M)N +M(L×N) . (90)

From Clifford Algebra to Geometric Calculus [3], p. 8, Equations (1.30a) and
(1.30d), we have

a ·A+ = 1
2 (aA+ −A+a) ,

a ∧A− = 1
2 (aA− −A−a) , (91)
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where A+ and A+ are, respectively, the even and odd parts of the multivector
A. Hence,

a ·A+ = a×A+ ,

a ∧A− = a×A− . (92)

The equation just after (2.29) [p.32, p.8] is

a · (b ∧B) = a · bB + b ∧ (a ·B) , (93)

but I got in (78)
a · (b ∧B) = a · bB − b ∧ (a ·B) , (94)

which is consistent with Eq. (1.42) p.12 of Clifford Algebra to Geometric Calculus
(CAGC) [3], which is given as

a · (Ar ∧B) = (a ·Ar) ∧B + (−1)rAr ∧ (a ·B) , (95)

where B = ⟨B ⟩k and k ≥ r ≥ 1.
If we now swap a with b in (78), we get

b · (a ∧B) = b · aB − a ∧ (b ·B) . (96)

Now, if we subtract (96) from (78), we get

a · (b ∧B)− b · (a ∧B) = a ∧ (b ·B)− b ∧ (a ·B) . (97)

However, this has a sign difference compared to Eq. (2.29) in the paper [p.32,
p.8].

Next, we have (2.30) [p.32, p.8] is

AB = A ·B +A×B +A ∧B , (98)

where A is a bivector and B is an s-vector. The book CAGC [3] gives the
following proof from page 10 (1.37a), where A2 = a1a2 = a1 ∧ a2:

A2Bs = a1a2Bs = a1(a2 ·B2 + a2 ∧Bs)

= a1 · (a2 ·Bs) + a1 ∧ (a2 ·Bs) + a1 · (a2 ∧Bs) + a1 ∧ (a2 ∧Bs)

= A2 ·Bs + [ a1 ∧ (a2 ·Bs) + a1 · (a2 ∧Bs) ] +A2 ∧Bs

= A2 ·Bs + ⟨A2Bs ⟩s +A2 ∧Bs . (99)

If we now switch the order of A2 and Bs we get

BsA2 = Bs ·A2 + ⟨BsA2 ⟩s +Bs ∧A2 . (100)

On subtracting this last equation from the previous one, we get

A2Bs −BsA2 = A2 ·Bs −Bs ·A2 + ⟨A2Bs −BsA2 ⟩s
+A2 ∧Bs −Bs ∧A2 . (101)
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That the last two terms cancel is easy to show. Just move a2 through Bs and
then move a2 through it, and find that A2 ∧Bs = Bs ∧A2. That leaves us with

A2Bs −BsA2 = A2 ·Bs −Bs ·A2 + ⟨A2Bs −BsA2 ⟩s . (102)

Next, we’ll show that
A2 ·Bs = Bs ·A2 . (103)

Thus,

A2 ·Bs = (a1 ∧ a2) ·Bs

= a1 · (a2 ·Bs)

= a1 · [ (−1)s−1Bs · a2 ]
= (−1)s−1a1 · ⟨Bs · a2 ⟩s−1

= (−1)s−1(−1)s−2⟨Bs · a2 ⟩s−1 · a1
= (−1)2s−3Bs · (a2 ∧ a1)

= (−1)2s−2Bs · (a1 ∧ a2)

= Bs ·A2 . (104)

Therefore, (102) becomes

A2Bs −BsA2 = ⟨A2Bs −BsA2 ⟩s . (105)

That leaves us to show that

⟨A2Bs ⟩s = −⟨BsA2 ⟩s . (106)

Hence,

⟨A2Bs ⟩s = a1 ∧ (a2 ·Bs) + a1 · (a2 ∧Bs)

= (−1)s−1a1 ∧ (Bs · a2) + (−1)(s+1)−1(a2 ∧Bs) · a1
= (−1)s−1(−1)s−1(Bs · a2) ∧ a1 + (−1)s(−1)s(Bs ∧ a2) · a1
= (Bs · a2) ∧ a1 + (Bs ∧ a2) · a1
= ⟨BsA

†
2 ⟩s

= −⟨BsA2 ⟩s . (107)

Therefore,

A×B ≡ 1
2 (AB −BA) = 1

2 (⟨A2Bs ⟩s − ⟨BsA2 ⟩s) = ⟨A2Bs ⟩s , (108)

which finalizes our proof of (98).

Next, we have (2.31) [p.33, p.8]. For 2-blades A, B, C:

(A×B) · C = ⟨ABC ⟩ = ⟨CAB ⟩ = (C ×A) ·B . (109)
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Lemma

For multivectors M,N
⟨MN ⟩ = ⟨NM ⟩ . (110)

The proof of this is based on two simple facts. First, for every scalar S, S = S†.
Hence,

⟨MN ⟩ = ⟨MN ⟩† = ⟨N†M† ⟩ . (111)

The second fact is that

⟨MN ⟩ = ⟨
∑
k

Mk ·Nk ⟩ , (112)

where k sums over all grade values in the multivectors, and only the scalar
values are retained. Therefore,

⟨MN ⟩ = ⟨N†M† ⟩ = ⟨
∑
k

N†
k ·M†

k ⟩

= (−1)k(k−1)/2(−1)k(k−1)/2⟨
∑
k

Nk ·Mk ⟩

= (−1)k(k−1)⟨
∑
k

Nk ·Mk ⟩ = ⟨NM ⟩ . (113)

Now,

⟨ABC ⟩ = ⟨ (A ·B +A×B +A ∧B)C ⟩
= ⟨ (A×B)C ⟩
= ⟨ ⟨A×B ⟩2C ⟩
= (A×B) · C . (114)

For what it’s worth, I have a second proof.

⟨ABC ⟩ = 1
2 ⟨ABC ⟩+ 1

2 ⟨ABC ⟩†

= 1
2 ⟨ABC ⟩+ 1

2 ⟨C
†B†A† ⟩

= 1
2 ⟨ABC ⟩ − 1

2 ⟨CBA ⟩
= 1

2 ⟨ABC ⟩ − 1
2 ⟨BAC ⟩

= ⟨ 1
2 (AB −BA)C ⟩

= ⟨ (A×B)C ⟩
= (A×B) · C . (115)

We’re almost finished now. On cyclically permuting the variables in the last
equation, we get

⟨CAB ⟩ = (C ×A) ·B . (116)
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And since ⟨ABC ⟩ = ⟨CAB ⟩ then,

(A×B) · C = (C ×A) ·B . (117)

From (97), we get

(a ∧ b)×B = a · (b ∧B)− b · (a ∧B) . (118)

Hence,
C ×B = (c ∧ c′)×B = c · (c′ ∧B)− c′ · (c ∧B) . (119)

⟨ABC ⟩ = ⟨A(B × C) ⟩ = −⟨A(C ×B) ⟩ . (120)

So,

⟨ABC ⟩ = −⟨A(C ×B) ⟩
= −⟨A(c · (c′ ∧B)− c′ · (c ∧B)) ⟩
= ⟨A[ c′ · (c ∧B)− c · (c′ ∧B) ] ⟩
= (A ∧ c′) · (c ∧B)− (A ∧ c) · (c′ ∧B)

= (A ∧ c′) · (B ∧ c)− (A ∧ c) · (B ∧ c′) . (121)

[I still have a sign difference here.]

13 Section 3 of the paper: The Algebra of
Incidence

Now we’re at [p.33, p.10].
It’s time now to meet the meet. The meet of two blades A and B is repre-

sented as A∨B. We can ask if this new operation can be expressed in terms of
operations we already know. The answer is yes. We need only the join operator
and duality.

(A ∨B)˜ ≡ Ã ∧ B̃ , (122)

which is Eq. (3.5). From the definition of the dual:

(A ∨B)˜ = (A ∨B)I−1 = Ã ∧ B̃ . (123)

From this we get the first part of (3.6).

A ∨B = (Ã ∧ B̃)I . (124)

Now, let Ã = ⟨ Ã ⟩p and B̃ = ⟨ B̃ ⟩q. Then,

(Ã ∨ B̃)I = ⟨ (AI−1) ∧ (BI−1) ⟩p+qI

= ⟨ (AI−1)(BI−1)I ⟩n−(p+q)

= ⟨ (AI−1)B ⟩(n−q)−p

= ⟨ ÃB ⟩(n−q)−p

= Ã ·B , (125)
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where in the next-to-last line, the grade (n− q)− p had p associated to Ã and
n− q associated to B, and whose difference would give us an inner product.

Now we assign: A = ⟨A ⟩r and B = ⟨B ⟩s. Next, we employ Eq. (2.12) of
the paper, using appropriate swapping of variables:

Ã ·B = ⟨ (AI−1)B ⟩(n−r)−s

= ⟨A[I−1 ·B] ⟩(n−s)−r

= (−1)s(n−s)⟨A[B · I−1] ⟩(n−s)−r

= (−1)s(n−s)⟨A[BI−1] ⟩(n−s)−r

= (−1)s(n−s)A · B̃ . (126)

Next we have (3.7), [p.34, p.10]. We begin with

(A ∨D)˜ = (Ã ∧ D̃) . (127)

So, we set D = B ∨ C, and get

(A ∨ (B ∨ C))˜ = (Ã ∧ (B ∨ C)˜ )
= (Ã ∧ (B̃ ∧ C̃))

= (Ã ∧ B̃ ∧ C̃)

= ((Ã ∧ B̃) ∧ C̃)

= ((A ∨B) ∨ C)˜ . (128)

Thus, we have shown that the meet operator is associative, which followed from
the fact that the wedge operator is associative.

In the paragraph just prior to (3.8) in the preprint paper, the equation

A ∧B = A×B should be Ã ∧ B̃ = Ã× B̃.

Next, we have (3.8) [p.35, p.10]. For (n− 1)-blades A, B:

A ∨B = (−1)n−1(A×B)I−1 . (129)

Hence,

Note: r = s = n− 1. Then, from (2.12, with s(n− s) = n− 1:

B · I = (−1)n−1I ·B , (130)

and
A · I = (−1)n−1I ·A . (131)

Also, in any expression that has a factor of both I and I−1, they can be ex-
changed. For example,

(d ∧ e I)xy I−1 = (d ∧ e I−1)xyI . (132)
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Why is this? Because I and I−1 differ only by a scalar multiple, and which
factor has this scalar multiple doesn’t matter.

A ∨B = (Ã ∧ B̃)I = [ (AI−1) ∧ (BI−1) ]I

= 1
2 ⟨ (AI−1)(BI−1)− (BI−1)(AI−1) ⟩2I

= 1
2 ⟨ (AI−1)(BI)− (BI−1)(AI) ⟩2I−1

= (−1)n−1 1
2 ⟨ (AI−1)(I ·B)− (BI−1)(I ·A) ⟩2I−1

= (−1)n−1 1
2 ⟨ (AI−1)(IB)− (BI−1)(IA) ⟩2I−1

= (−1)n−1 1
2 [ (AB)− (BA) ]I−1

= (−1)n−1(A×B)I−1 . (133)

At this point we have to take into consideration an important special case.
Equations (3.5) and (3.6) are suitable to define the meet only for the case when

r + s > n. If r + s = n, then Ã · B = ⟨ Ã · B ⟩, which is a scalar. But what
are the allowable scalar values? The meet has to be a sub-vector space of the
vector space of dimension n. However, the only scalar that could impersonate
a zero-dimensional sub-vector space is zero. Hence, we have that

A ∨B = Ã ·B ≡ 0 for r + s = n . (134)

Let’s look at an important special case. Say that we are in the projective
plane and we know that three lines A, B, and C are concurrent at a point, say
point D. Then what is A ∨B ∨ C? Well, we already know that

A ∨B ∨ C = (A ∨B) ∨ C = (Ã ·B) ∨ C . (135)

Algebraically speaking, the lines A, B, and C are 2-blades, and n = 3. Thus,
r = 2, s = 2, t = 2 for the steps of the blades A, B, and C, respectively.
Therefore, Ã has grade 1, and so D ≡ Ã · B also has grade 1. Hence, in the
resulting expression D ∨ C the sum of their grades is 3. Therefore, we have to
assign D ∨ C = 0, which forces us to conclude that

A ∨B ∨ C = 0 . (136)

Next we move to the projective interpretation of blades and incidence rela-
tions, beginning at [p.35, p.10]. I’ll start my comments at Eq. (3.10) and the
paragraph just before it. The text claims

For example, each pair of distinct points a and b determine unique
line a ∧ b. Also, a point p lies on a line A if and only if

p ∧A = 0 .

[This is Eq. (3.10) in the paper.]
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So, I’ll now explain this as I understand it, by using a projective plane in two
dimensions P2. We’ll be considering figures in a plane P2 which by construction
contain points and lines. I already explained how to interpret this in the Gibbs’s
vector-algebra representation given before. My explanation here will keep close
to that previous explanation.

We begin with a 3-D vector space. By definition this vector space has a
special point, called the zero vector, 000. All the vectors of this space have the base
point of these vectors at this zero point. Every point in this underlying space has
a vector whose tip is at this point. Thus, there is a one-to-one correspondence
between the points in the underlying space and the vectors of the vector space.

Next, we embed a plane into this space, which we’ll call the projective plane
P2. It can be any plane you wish but it cannot contain the zero point. Now,
imagine that there are two distinct points on P2, call them a and b. The join
of a and b will be a unique line in P2 containing these points.

Here’s where the magic happens. That line that contains a and b can be
represented by the intersection of P2 with some plane that contains the origin
000. Such a plane I refer to as an oriplane. It just so happens that the bivector
a ∧ b has the same direction in space as does the oriplane that contains points
a and b and 000. Hence, we can represent this oriplane by the bivector a∧ b. The
only thing special about vectors a and b is that they ‘are distinct vectors that
lie in the oriplane. Any other two distinct nonzero vectors that ‘lie in the same
oriplane’ would also serve to represent both the oriplane and its intersection
with the line in P2 which contain the points a and b. Thus a ∧ b represents at
the same time an oriplane and the join of the points a ∧ b.

Now, the set of all points x on this join line must satisfy the relation

x ∧ a ∧ b = 0 ,

for to do so is to mean that the three vectors a, b , x as vectors in 3-space are
coplanar. Hence, for a particular point p in P2, it lies on the join of a and b,
with A ≡ a ∧ b, if and only if

p ∧A = 0 .

Okay, so I used the bivector A as constructed from vectors a and b, but any
nonzero bivector of the same plane would do. And those two bivectors would
be nonzero scalar multiples of each other.

Now, we move to Eq. (3.10) and the ’absorption relation’

p ∨A = p , (137)

where ‘p lies on line A’ is the projective plane interpretation. As viewed from
outside the projective plane, we interpret it as the vector p lying within the
bivector A (or rather the oriplane it represents). If we interpret (137) as the
projective line P1 and use (3.6), we get that

p ∨A = p̃ ·A = p̃A = p . (138)
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In other words, if P1 is the space of interest, then its pseudoscalar is the bivector
A. Therefore

p̃ = pA−1 = p ·A−1 , (139)

whereby the bivector A−1 will rotate the vector p by 90◦ clockwise in the A
plane. Therefore

p̃ · p = 0 . (140)

Returning to (138), we have

p ∨A = p̃ ·A = ⟨ pA−1 ·A ⟩1 = ⟨ pA−1A ⟩1 = ⟨ p ⟩1 = p . (141)

Put into words, multiplying p by A−1 will rotate the vector p by 90◦ clockwise
with a scalar factor. And then multiplying pA−1 by A on the right will rotate
that vector by 90◦ counterclockwise and undo the scalar factor.

Now we’re at [p.36, p.12] for incidence relations among lines

We begin with Eq. (3.12), with two distinct lines being represented by A
and B. Then, these lines intersect if and only if

A ∧B = 0 . (142)

As I explained in the Gibbs’s vector representation, we can look at the lines
in P2 the intersections (meets) of oriplanes with the plane P2. For the case of
parallel distinct lines in P2, their oriplanes will intersect in a line that is parallel
to P2 and goes through the origin. For two distinct lines in P2 that are not
parallel, they will intersect in a point, as in the Euclidean case, but we have
the advantage of projective geometry to find that point of intersection. With
the Gibbs’s vectors, we know from our earlier mathematical studies that two
non-parallel planes in 3-D will intersect in a line whose vector representation is
given as the cross product of the two normals of the two planes.23 However, in
the geometric algebra, instead of using cross products, we’ll use the bivectors to
the planes to represent the planes.

So, my analysis will be exclusively in P2. Thus, the two ‘lines’ A and B
meet at point

p = A ∨B = (A×B)J−1 , (143)

where we have used (129) and J is the join of A and B, which is the smallest
proper space that contains both A and B. If we assign particular factored
bivectors to both A and B as

A = a ∧ a′ and B = b ∧ b′ , (144)

then we get Eq. (3.14)

A ∨B = Ã ·B = (Ã · b)b′ − (Ã · b′)b = [aa′b]b′ − [aa′b′]b , (145)

23In the Gibbs’s part of the analysis, I referred to this point as the ‘projective location’.
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where we used (2.22). This computation is the same that I got in the Gibbs’s
version that I did above, such as in Eq. (54a), except that I got an overall
negative sign in my version compared to the above. This may be due to the
difference of how the cross product is derived from a bivector. I’ll have to check
into this later on.

Let’s go over this computation. But first, we take a look at this bracket
notation [xyz] is what I have call the ‘scalar product of the three vectors’ x, y, z,
or,

[xyz] = [(x× y) · z] = [(z × x) · y] = [(y × z) · x] . (146)

Hence,
[xyz] = [zxy] = [yzx] . (147)

Also, we have that

Ã = AJ−1 = (a ∧ a′)J−1 = a× a′ . (148)

Therefore,

A ∨B = Ã ·B = Ã · (b ∧ b′)

= (Ã · b)b′ − (Ã · b′)b
= ((a× a′) · b)b′ − ((a× a′) · b′)b
= [aa′b]b′ − [aa′b′]b . (149)

We can express the meet in terms of the projective location:

A ∨B = [aa′b]b′ − [aa′b′]b

= b′[aa′b]− b[aa′b′]

= b′[baa′]− b[b′aa′]

= [bb′aa′] = −[aa′bb′] . (150)

In the problem I did above on Pappus, I defined the meet of two lines a∧ a′

and b∧ b′ into a point as the ‘projective location’ of two lines in P2 by [aa′bb′] =
(a × a′) × (b × b′). This differs by a minus sign from how the meet is defined
here. But that should be fine because overall sign is nothing more than a nonzero
scalar multiple, which we’ve been given to ignore. Indeed, if one demands that

A ∨B = B ∨A , (151)

say in P2, then this sign difference is obvious, for

B ∨A = B̃ ·A = (BI−1) ·A = ⟨BI−1A ⟩1
= ⟨BAI−1 ⟩1
= ⟨B ×AI−1 ⟩1 = −⟨A×BI−1 ⟩1
= −⟨ABI−1 ⟩1 = −⟨AI−1B ⟩1
= −Ã ·B
= −A ∨B . (152)
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We have seen that one way to declare three lines in P2 to be concurrent (at
a point) is to use condition (136). Seemingly a more practical method is to use
Eq. (3.15). Let p be the meet of two lines A and B. Then p is on a third line
C if

p ∧ C = 0 . (153)

Viewed from the enveloping space, this means that the vector p lies in the plane
specified by the bivector C. So, let p = A ∨B, then

p ∧ C = (A ∨B) ∧ C = 0 . (154)

On expanding this, we get

(A ∨B) ∧ C = [ (A×B)J−1 ] ∧ C

= [ (A×B) · C ]J−1 . (155)

So, if A, B, and C are all bivectors then

(A×B) · C = ⟨ABC ⟩ = 0 . (156)

is the simple algebraic condition that lines A, B, and C are concurrent.
So, we might ask what ⟨ABC ⟩ should really mean. Should it mean ⟨ABC ⟩ =

A · (B × C) for example?

A · (B × C) = 1
2 ⟨A(BC − CB) ⟩ = 1

2 [ ⟨ABC ⟩ − ⟨ACB ⟩ ]
= 1

2 [ ⟨ABC ⟩ − ⟨BAC ⟩ ]
= 1

2 ⟨ABC −BAC ⟩
= 1

2 ⟨ (AB −BA)C ⟩
= (A×B) · C . (157)

14 Section 4 of the paper: Two-dimensional
projective geometry

Now we’re at [p.37, p.13].

So, at this point we confine our interest just to P2. To begin with, we already
saw that three points in P2, say a, b, and c, are on a line if and only if their
vector representations lie in some oriplane, in which case

J = a ∧ b ∧ c = 0 . (158)

On the other hand, if a, b, and c are three distinct non-collinear points in P2

then J = a ∧ b ∧ c will not be zero, and will, in fact, be a scalar multiple of the
pseudoscalar in G3.

Of some usefulness to us is the fact that every bivector in G3 is a 2-blade.
Let’s prove this. It’s sufficient to prove this if the dual of every vector is a
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2-blade, which is obvious. Now, we assume that the there exists a bivector
B that cannot be written as the dual of a vector. We’ll make the simplifying
assumption that

B = B1 +B2 . (159)

So, what is the dual of B? Let the pseudoscalar of G3 be represented by I.
Then the dual of B is BI, yielding

BI = B1I +B2I . (160)

But the dual of every bivector is some vector, hence B1I = b1 and B2I = b2,
then

BI = B1I +B2I = b1 + b2 = b , (161)

where b is just some vector. Hence B is the dual of a vector, and thus is a
2-blade.

Now, three distinct non-collinear points in G3, a, b, and c, which are in P2,
generate in pairs three distinct lines in P2, which correspond to three distinct
oriplanes, which corresponds to three distinct bivectors in G3. Now comes the
big step: we will calculate with objects in G3, though we will refer to their
corresponding objects in P2. Thus, we have the three ‘lines’

A = b ∧ c = ÃJ , B = c ∧ a = B̃J , C = a ∧ b = C̃J . (162)

Having the three points a, b, and c, we can define a pseudoscalar with them,
such as

J = a ∧ b ∧ c . (163)

Probably J is not a unit pseudoscalar, but that’s okay. Anyway, we can now
solve for the vectors dual to A,B,C, from (162) to get Eq. (4.3):

Ã = AJ−1 =
b ∧ c

a ∧ b ∧ c
, B̃ = BJ−1 =

c ∧ a

a ∧ b ∧ c
, C̃ = CJ−1 =

a ∧ b

a ∧ b ∧ c
. (164)

The division by J is legitimate because in G3, J is a pseudoscalar and pseu-
doscalars commute with all elements of the G3 algebra.

Now for Eq. (4.4). Since the vector a is a common factor of distinct bivectors
B and C, then, with the help of (124):

a = C ∨B = (C̃ ∧ B̃)J , (165)

and similarly for vectors b and c. For Eq. (4.5a), I’ll give a sample calculation:

a · B̃ = ⟨ aB̃ ⟩ = ⟨ aBJ−1 ⟩
= ⟨ aB ⟩3J−1

= ⟨ ac ∧ a ⟩3J−1

= 0 . (166)
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For Eq. (4.5b), I’ll give another sample calculation:

a · Ã = ⟨ aÃ ⟩ = ⟨ aAJ−1 ⟩
= ⟨ ab ∧ c ⟩3J−1

= ⟨ a ∧ b ∧ c ⟩3J−1

= JJ−1

= 1 . (167)

For Eq. (4.6), the quick path to the solution is to use Eq. (2.32):

⟨CBA ⟩ = ⟨CB(b ∧ c) ⟩
= (C ∧ b) · (B ∧ c)− (C ∧ c) · (B ∧ b)

= (a ∧ b ∧ b) · (c ∧ a ∧ c)− (a ∧ b ∧ c) · (c ∧ a ∧ b)

= −(a ∧ b ∧ c) · (a ∧ b ∧ c)

= −J2 . (168)

The paper’s result is J2.

Next, Eq. (4.7).

C̃ ∧ B̃ ∧ Ã = J−1 . (169)

It’s sufficient to prove (169) to prove that

(C̃ ∧ B̃ ∧ Ã)J = 1 . (170)

This equation becomes
⟨ (C̃ ∧ B̃ ∧ Ã)J ⟩ = 1 . (171)

The advantage of using this latter form is that we can add in or subtract out
any quantity that will get removed when the scalar select operator does its duty.
In other words, it will remove any quantity that’s not a scalar.

⟨ (C̃ ∧ B̃ ∧ Ã)J ⟩ = ⟨ (CJ−1) ∧ (BJ−1) ∧ (AJ−1)J ⟩
= ⟨ (CJ−1) ∧ (BJ−1)(AJ−1)J ⟩
= ⟨ (CJ−1) ∧ (BJ−1)A ⟩
= ⟨ (CJ−1)(BJ−1)A ⟩
= ⟨CBAJ−2 ⟩
= ⟨CBA ⟩J−2

= J2J−2

= 1 , (172)

where I used that ⟨CBA ⟩ = J2.

So now we finally arrive at Desargues’s Theorem! [p.39, p.14]
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Figure 8. Desargues’s Theorem: Two triangles that are perspective from a point

are perspective from a line. As before, the figure lies in P2, which lies in a 3-dim

vector space (which is hidden). And P2 does not contain the origin of this vector

space. All the labeled points are the tips of vectors whose bases are at the origin.

With regards to Desargues’s figure in Figure 8, we can add to relations (162),
(163), and (164) the following:

A′ = b′ ∧ c′ = Ã
′
J ′ , B′ = c′ ∧ a′ = B̃

′
J ′ , C ′ = a′ ∧ b′ = C̃

′
J ′ . (173)

J ′ = a′ ∧ b′ ∧ c′ . (174)

Probably J is not a unit pseudoscalar, but that’s okay. Anyway, we can now
solve for the vectors dual to A′, B′, C ′, from (162) to get the results that corre-
spond Eq. (4.3):

Ã
′
= A′J ′−1 =

b′ ∧ c′

a′ ∧ b′ ∧ c′
, B̃

′
= B′J ′−1 =

c′ ∧ a′

a′ ∧ b′ ∧ c′
, C̃

′
= C ′J ′−1 =

a′ ∧ b′

a′ ∧ b′ ∧ c′
.

(175)

As pseudoscalars for G3, both J and J ′ have to represent P2. This seems rea-
sonable enough since every pseudoscalar of G3 has to represent every projective
plane, since the projective plane is chosen arbitrarily, except that it not contain
the origin. Thus,

J = a ∧ b ∧ c = [ abc ]I , J ′ = a′ ∧ b′ ∧ c′ = [ a′b′c′ ]I , (176)

where I is the unit pseudoscalar of G3, and

[ abc ] = a · (b× c) and [ a′b′c′ ] = a′ · (b′ × c′) . (177)
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Now, we need to define three lines P , Q, and R based on the figure (defined
as the joins of pairs of points in P2):

P = a ∧ a′ , Q = b ∧ b′ , R = c ∧ c′ , (178)

which is Eq. (4.11).
What we’re trying to show is that if lines are concurrent at some point, which

we’ll call D, then points p, r, and q are incident with the same line, which we’ll
call (prq), which is the join of points p, r, and q, if our theorem is correct. Thus,

p = A ∨A′ , q = B ∨B′ , r = C ∨ C ′ . (179)

At this point, we are looking for a relationship between the concurrence of
the three lines P , Q, and R at point D and the joins of the three points p, r,
and q. If lines P , Q, and R meet at a common point D, then we could naively
conclude that

P ∨Q ∨R = D . (180)

But we’ve already concluded that this double meet must be set to zero.

Figure 9. Desargues’s Theorem: This version of the figure includes the

six lines (joins) A, B, C, and A′, B′, C ′.

But whether P ∨Q ∨R is zero or not,

P ∨Q ∨R = (P̃ ∧ Q̃ ∧ R̃) I . (181)

The LHS of this equation is (corresponds to the next displayed equation after
Eq. (4.14) [p.40, p.15])

⟨ (a∧a′)(b∧b′)(c∧c′) ⟩ = (b′∧b∧c) · (a∧c′∧a′)− (b∧b′∧c′) · (c∧a∧a′) . (182)
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Now, we want to expand the RHS of (182), without grouping any vector with
its prime, so, for example,

b′ ∧ b ∧ c = b′ ∧ (b ∧ c) = b′ ∧A = b′ ∧ (ÃJ) (183)

From Fig. 9, we see that b′ = A′ ∨ C ′ = Ã
′
∧ C̃

′
J ′; therefore,

b′ ∧ b ∧ c = b′ ∧ (b ∧ c) = (Ã
′
∧ C̃

′
J ′) ∧ (ÃJ) = (Ã

′
∧ C̃

′
∧ Ã)JJ ′ (184)

Note: Since J and J ′ are both pseudoscalars, their product JJ ′ = J ′J is a
nonzero scalar. Let’s fill-in some steps:

b′ ∧ (b ∧ c) = (Ã
′
∧ C̃

′
J ′) ∧ (ÃJ)

= ⟨ (Ã
′
∧ C̃

′
J ′) ∧ (ÃJ) ⟩3

= ⟨ (Ã
′
∧ C̃

′
J ′)(ÃJ) ⟩3

= ⟨ Ã
′
∧ C̃

′
ÃJJ ′ ⟩3

= ⟨ Ã
′
∧ C̃

′
Ã ⟩3JJ ′

= (Ã
′
∧ C̃

′
∧ Ã)JJ ′ . (185)

So, let’s present the other three products on the RHS of (182).

a ∧ c′ ∧ a′ = (B̃ ∧ C̃ ∧ B̃
′
)JJ ′ , (186)

b ∧ b′ ∧ c′ = (Ã ∧ C̃ ∧ Ã
′
)JJ ′ , (187)

c ∧ a ∧ a′ = (B̃ ∧ C̃
′
∧ B̃

′
)JJ ′ . (188)

Now,
⟨ a ∧ a′ b ∧ b′ c ∧ c′ ⟩ = ⟨PQR ⟩ . (189)

Then

⟨ a ∧ a′ b ∧ b′ c ∧ c′ ⟩ = [(Ã
′
∧ C̃

′
∧ Ã)JJ ′] · [(B̃ ∧ C̃ ∧ B̃

′
)JJ ′]

− [(Ã ∧ C̃ ∧ Ã
′
)JJ ′] · [(Ã

′
∧ C̃

′
∧ Ã)JJ ′]

= (JJ ′)2[(Ã
′
∧ C̃

′
∧ Ã)] · [(B̃ ∧ C̃ ∧ B̃

′
)]

− [(Ã ∧ C̃ ∧ Ã
′
)] · [(Ã

′
∧ C̃

′
∧ Ã)] . (190)

This brings us to Eq. (4.13),

⟨ a ∧ a′ b ∧ b′ c ∧ c′ ⟩ = JJ ′⟨ Ã ∧ Ã
′
B̃ ∧ B̃

′
C̃ ∧ C̃

′
⟩ . (191)
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Rephrasing this, in accord with the figure:

⟨PQR ⟩ = JJ ′⟨ (A ∨A′)∼ (B ∨B′)∼ (C ∨ C ′)∼ ⟩
= JJ ′⟨ p̃ q̃ r̃ ⟩
= JJ ′⟨ pI−1 qI−1 rI−1 ⟩
= JJ ′I⟨ p q r ⟩3
= JJ ′I⟨ p q r ⟩3
= JJ ′p · (q × r)

= JJ ′[pqr] , (192)

where we have use the Gibbs’s cross product.

Now, by our assumptions, JJ ′ ̸= 0. Thus, the three lines P , Q, and R are
concurrent (at D) iff ⟨PQR ⟩ = 0 iff points p, r, and q are joined on the same
line iff p · (q × r) = 0. And that finishes Desargues’s Theorem.

15 Pascal’s Theorem

Now, we’re skipping a few pages (and a few theorems) and going to the subsection
on Conics [4.3, p.44, p.18] to get to the last theorem I’ll deal with this time
through the paper, which is Pascal’s Theorem. This takes us to page at [p.44,
p.18].

Figure 10. Pascal’s Theorem: Our first task is to figure out how to ‘construct’

an ellipse out of our proper objects of points, lines, and planes. Remember, all

the points shown on the ellipse above are the tips of vectors from the origin to

the projective plane, in which our ellipse resides.
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Definition: The pencil of lines through a point is the set of all lines through
that point.

If we look at the point a on the ellipse in Fig. 10, we see two of the lines of
the infinite pencil of lines that go through point a in P2. At this point, I want
to explain the meaning of the sentence:

The set of all lines passing through a point is called a pencil of
lines. Every such pencil is uniquely determined by two of its lines
A,B and can be represented by the expression A + λB where λ ∈
R ∪ {−∞,+∞}. [p.44, p.18]

Before we attempt to tackle lines in the projective plane, how about we try
to grasp points on a projective line.

Figure 11. The line L can be considered as our P1 space. Question: given

points a and b and real scalar λ, can we find a point c such that ac/ab = λ?

Let a and b be points on a line L and let ab be the length of line segment
ab. Furthermore, let ac be the length of line segment ac. Can we find a point
on L such that

ac

ab
= λ ? (193)

Well, we can get to any point on L by first arriving at point b, say, on L and

then traveling some multiple α amount of the vector
→
ab, or rather a− b. Hence,

c = b+ α(a− b) = αa+ (1− α)b . (194)

The middle expression of this last equation shows us that we get find c by first
arriving somewhere on L and then sliding along L some suitable amount in the
direction of L, which is along the vector a − b. However, the RHS expression
has completely changed the way we look at the problem, for it tells us that we
can arrive at the point c be merely adding the right ratios of a to b. We will
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need a generalization of this concept to understand how to construct an ellipse
out of ‘lines’, i.e., out a bivectors.

As for answering the question asked, subtract (194) from the equation a = a:

a− c = a− [αa+ (1− α)b] = (1− α)(a− b) . (195)

Therefore,
ac

ab
=

a− c

a− b
= 1− α = λ . (196)

Lastly, we solve for α
α = 1− λ . (197)

Since A and B are both lines through the point a, they can both be factored
with the vector a, such as

A = a ∧ b , (198)

B = a ∧ b′ . (199)

According to the claim, we should be able to write any other line D through a
as a linear combination of A and B, such as

D = αA+ βB , (200)

which stands for
D = αa ∧ b+ β a ∧ b′ , (201)

where neither α nor β is zero. But wait! We can only know D up to an
arbitrary nonzero scale factor. Hence, we can multiply through on the RHS by

any nonzero real number. So we’ll multiply through by α−1 and set = λ =
β

α
,

we get

D = a ∧ b+
β

α
a ∧ b′ (202a)

= a ∧ b+ λ a ∧ b′ = A+ λB (202b)

= a ∧ (b+ λ b′) . (202c)

Then the articles goes on to say

Two pencils of lines X = A + λB and X ′ = A′ + µB′ are said to
be projectively related if they can be put into an ordered one-to-
one correspondence such that X corresponds to X ′ if and only if
λ = µ. In this case, the set of intersection points of corresponding
lines forms a conic. [p.44, p.18]

Let ϕ be a one-to-one linear map of points on L to points on L′, then, ϕ(A) = A′,
ϕ(B) = B′, and if x is on both L and L′, then is has to be a fixed point of the
mapping, i.e., ϕ(x) = x.
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So, if point x should be a point of intersection of lines L and L′, i.e., x is
the meet of the two lines, then

x ∧ L = x ∧A+ λx ∧B = 0 , (203a)

maps to the requirement that x be on L′

x ∧ L′ = x ∧A′ + λx ∧B′ = 0 . (203b)

We can eliminate λ between these two equations by first multiplying (203a)
through by (x∧B′) on the right, and second by multiplying (203b) through by
(x ∧B) on the left, and then taking their difference, to get

(x ∧A)(x ∧B′)− (x ∧B)(x ∧A′) = 0 , (204)

which is Eq. (4.18). The significance of this last equation is that it scalar part
is a quadratic in x, hence is the equation for a conic. But x is also the meet of
the two lines L and L′, hence,

x = L ∨ L′

= (A+ λB) ∨ (A′ + λB′)

= A ∨A′ + λ(A ∨B′ +B ∨A′) + λ2B ∨B′ . (205)

Now, we must replace x from being a function of ‘lines’ to a function of ‘points’
(vectors). Based on Fig. 10:

A = a ∧ b , B = a ∧ b′ , (206a)

A′ = a′ ∧ b , B′ = a′ ∧ b′ , (206b)

b = A ∨A′ , b′ =B ∨B′ . (206c)

If, for convenience, we define a new point d as,

d ≡ A ∨B′ +B ∨A′ , (207)

then we can simplify (205) to

x = b+ λd+ λ2b′ . (208)

Now, for three noncollinear points, p, q, and r, then p ∧ q ∧ r ̸= 0, and we
get the parametric equation for a nondegenerate ellipse:

x = p+ λq + λ2r . (209)

We can interpet this equation from the viewpoint of the embedding space: a
generic point x on some conic in P2 is the sum of three vectors: p, λq, and λ2r.

Now, if we define

P = q ∧ r , (210a)

Q = r ∧ p , (210b)

R = p ∧ q , (210c)
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which names the three distinct lines that can be formed out of these three
distinct points: p, q, and r. Now, if we wedge (209) by p on the left, we get

p ∧ x = λp ∧ q + λ2p ∧ r = λ(R− λQ) . (211a)

By a similar procedure, we get

r ∧ x = r ∧ q + λr ∧ q = Q− λP . (211b)

Thus, (211a) and (211b) constitute “two projective pencils that generate the
conic [5,§24].”24

If we expand (204), we get

(x ∧ a ∧ b)(x ∧ a′ ∧ b′)− (x ∧ a ∧ b′)(x ∧ a′ ∧ b) = 0 . (212)

Each of the four points a, b, a′, b′ individually satisfy (212).
Now, by replacing x by the point p, we get

(p ∧ a ∧ b)(p ∧ a′ ∧ b′)− (p ∧ a ∧ b′)(p ∧ a′ ∧ b) = 0 . (213)

And, since each of these pseudoscalar quantities can be replaced by its magni-
tude (determinant) times a unit pseudoscalar I, we then get

[pab]I[pa′b′]I − µ[pab′]I[pa′b]I = 0 , (214)

where µ ̸= 0 and which simplifies to

[pab][pa′b′]− µ[pab′][pa′b] = 0 . (215)

As of the time of this, my first writing on the article, I do not understand
where the µ factor came from.25

In any case, we can solve for µ by substituting the generic point p with some
other definite point that lies on the curve, namely c′, yielding

µ =
[c′ab][c′a′b′]

[c′ab′][c′a′b]
. (216)

This brings us to an obvious error in the preprint version of this equation. In
the preprint version (on page 19), in the left factor of the denominator of the
fraction, it reads [cab′], which is wrong.

We should note that µ in (216) contains five distinct points, which accounts
for the five degrees of freedom for an ellipse.

24This source reference is to H. G. Forder’s interesting book The Calculus of Extension.
(Sub)section 24 is in Chapter III: “Applications to Projective Geometry.” The book is available
for reading on The Internet Archive.

25I think I’ll make a guess where this µ factor came from. We have been treating objects
as equivalent if they differ only by a nonzero scalar factor, and this works fine when we don’t
add these things together. When we do add these objects together, we may need to include
a nonzero scalar factor to resynchronize various terms within a sum. Now, it might be that
µ = 1 or it might not.
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Anyway, Eq. (215) can now be written as

[pab][pa′b′][c′ab′][c′a′b]− [pab′][pa′b][c′ab][c′a′b′] = 0 . (217)

Now, we reorder the points in the determinants to put them in standard form
(except that when a p is present, it will be first):

[pab][pa′b′][ab′c′][a′bc′]− [pab′][pa′b][abc′][a′b′c′] = 0 , (218)

which is Eq. (4.19).
Thus, our conic has been decided by the five distinct points that lie on it:

a, b, a′, b′, c′. Now, let c be an additional point on the ellipse, which gives us the
relation

[cab][ca′b′][ab′c′][a′bc′]− [cab′][ca′b][abc′][a′b′c′] = 0 . (219)

On reordering the factors in the square brackets, as we did before, we get

[abc][a′b′c][ab′c′][a′bc′]− [ab′c][a′bc][abc′][a′b′c′] = 0 . (220)

On reordering the square brackets themselves, we get Eq. (4.20)

[abc][ab′c′][a′bc′][a′b′c]− [a′b′c′][ab′c][a′bc][abc′] = 0 . (221)

Figure 12. Pascal’s Theorem with the ellipse all decked out. Our hypothesis

is that e ∧ f ∧ g = 0, for, in that case, points e, f , and g are collinear.

So, our hypothesis is that points e, f , and g are collinear, in which case

e ∧ f ∧ g = 0 . (222)

The plan forward is to express the points e, f , and g as the meets of appropriate
pairs of lines among A,A′, B,B′, C, C ′. After that, we replace each line by the
join of the pair of points on the ellipse (conic) that formed it.

Therefore, we re-express the interior points as meets of the two appropriate
lines:

e = A′ ∨ C ′ , f = A ∨B′ , g = C ∨B . (223)
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But, as we already noted, these lines through the ellipse are the joins of points
that line on the ellipse, hence,

A = a′ ∧ a , B = b′ ∧ b , C = c′ ∧ a , (224a)

A′ = a′ ∧ b , B′ = b′ ∧ c , C ′ = c′ ∧ c . (224b)

Thus, (222) becomes, at first,

(A′ ∨ C ′) ∧ (A ∨B′) ∧ (C ∨B) = 0 . (225)

Finally, we employ the joins to get

[ (a′ ∧ b) ∨ (c′ ∧ c) ] ∧ [ (a′ ∧ a) ∨ (b′ ∧ c) ] ∧ [ (c′ ∧ a) ∨ (b′ ∧ b) ] = 0 . (226)

This last equation is equivalent to Eq. (4.21) in the article, although its order
of presentation of the factors is different, though this is of no concern because
the two corresponding expressions can only differ by a possible overall factor of
a minus sign, which is irrelevant because we are only interested when the LHS
expression is equal to zero.

So, how do we proceed to compute (226)? Well, the article claims that
the equivalence between Equations (221) and (226) is “readily verified.” Well, I
don’t know about that, but it is straightforward.

But first, a word about those scalars ‘[xyz]’. They are the magnitude of
pseudoscalars, which in this case are trivectors. Therefore, they’re also deter-
minants. However, in the papers I wrote on my comments on Dorwart’s book
on incidence geometry [2], I referred to them as ‘scalar products,’ as they are
scalars produced by the products of three vectors, namely, for the three vectors
x, y, z

[xyz] = x · (y × z) . (227)

These scalar products can be cyclically permuted:

[xyz] = [zxy] = [yzx] . (228)

Now, in my papers on Dorwart’s book, I computed the meet of two ‘lines’ to
find their point of intersection (which I called its ‘projective location’) by taking
the cross product of the two cross products of the two oriplanes, each of which
that represent one the lines in the projective plane, in other words,

[abcd] ≡ (a× b)× (c× d) . (229a)

= c[d · (a× b)]− d[c · (a× b)] (229b)

= c[dab]− d[cab] (229c)

= c[abd]− d[abc] . (229d)

Clearly, then, by the antisymmetry of the cross product,

[abcd] = −[cdab] ,

[abcd] = −[bacd] ,

[abcd] = −[abdc] . (230)
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We can convert this triple cross product into the form I prefer,

[abcd] = −[cdab]

= −a[bcd] + b[acd]

= b[acd]− a[bcd]

= [b][acd]− [a][bcd] , (231)

where I used the notation [x] = x, which I used in my review of Dorwart’s book,
but will not use here.

Transposing any two ‘touching’ vectors is antisymmetric:

[xyz] = −[xzy] , [xyz] = −[yxz] . (232)

Now, to establish the equivalence of (221) and (226), I will start with (226)
and produce (221). Once that is done, going the other direction is obvious.

My first step is to convert (226) to a scalar product by multiplying both sides
by the unit pseudoscalar, to get

[ (a′ ∧ b) ∨ (c′ ∧ c) ] ·
{
[ (a′ ∧ a) ∨ (b′ ∧ c) ]× [ (c′ ∧ a) ∨ (b′ ∧ b) ]

}
= 0 . (233)

Now, the meet of the two lines (a′ ∧ b) and (c′ ∧ c) can be written as their
projective location

(a′ ∧ b) ∨ (c′ ∧ c) = [a′bc′c] . (234)

With this notation, (233) becomes

[a′bc′c] ·
{
[a′ab′c]× [c′ab′b]

}
= 0 . (235)

But, how should we expand these ‘projective locations’? Note that in (221) all
the scalar products have one each of an a, a b, and a c, with or without a prime
on it. Hence, we should expand out projective locations to be consistent with
that. Then, with a small modification, we start the problem of expansion with
this form:

[c′ca′b] ·
{
[a′ab′c]× [b′bc′a]

}
= 0 . (236)

Let Ω ≡ [c′ca′b] ·
{
[a′ab′c]× [b′bc′a]

}
, then

Ω =
{
c[c′a′b]− c′[ca′b]

}
·
{
(a[a′b′c]− a′[ab′c])× (b[b′c′a]− b′[bc′a])

}
=

{
c[c′a′b]− c′[ca′b]

}
·
{
([ab][a′b′c][b′c′a]− [ab′][a′b′c][bc′a]

− [a′b][ab′c][b′c′a] + [a′b′][ab′c][bc′a])
}
. (237)

And now for the last expansion step:

Ω = [cab][c′a′b][a′b′c][b′c′a]− [ca′b][c′a′b][a′b′c][bc′a]

− [ca′b][c′a′b][ab′c][b′c′a] + [ca′b′][c′a′b][ab′c][bc′a]

− [c′ab][ca′b][a′b′c][b′c′a] + [c′ab′][ca′b][a′b′c][bc′a]

+ [c′a′b][ca′b][ab′c][b′c′a]− [c′a′b′][ca′b′][ab′c][bc′a] . (238)
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Except for the first and last terms, the others cancel out in pairs, leaving us
with

Ω = [cab][c′a′b][a′b′c][b′c′a]− [c′a′b′][ca′b][ab′c][bc′a] . (239)

This equation is the same as that in (221), after the vectors are reordered.
Thus, if we set Ω = 0, we get the condition that the points lie on a conic, and
establishes the implication: (226) ⇒ (221). We can reorder the vectors in the
scalar products in a more lexical ordering.

Ω = [abc][a′bc′][a′b′c][ab′c′]− [a′b′c′][a′bc][ab′c][abc′] . (240)

And this takes us as far into the article as I have time to pursue at this point.
I’ll end this section with the comment that Stefanovic and Milosevic [7]

took an approach similar to the approach I took here. They also found that
most of the terms in the sum in (238) cancel out. They also used what I call
the ’projective locations’ to represent the meets of lines defined by the joins of
points, which are triple cross products (p. 621).

16 Conclusion

Hopefully, this introduction presented here as my personal notes on the article
will assist the determined reader to start to grasp projective geometry of the
projective plane by the visualization given first in the Gibbs’s vector algebra
and then, more elegantly, by the geometric algebra.

References

[1] H. S. M. Coxeter, Projective Geometry, 2nd ed., Springer-Verlag (2003).

[2] H. L. Dorwart, The Geometry of Incidence, Prentice-Hall (1966).

[3] D. Hestenes, and G. Sobczyk, Clifford Algebra to Geometric Calculus, Reidel
(1987).

[4] D. Hestenes, Universal geometric algebra, Simon Stevin 63, 253–274, (1988).

[5] D. Hestenes, The design of linear algebra and geometry, Acta Appl. Math.
Vol. 23 , 65–93 (1991).

[6] D. Hestenes, R. Ziegler, Projective Geometry with Clifford Algebra, Acta
Appl. Math. Vol. 23, 25–63 (1991).

[7] N. Stefanovic, M. Milosevic, A very simple proof of Pascal’s hexagon theorem
and some applications, Indian Academy of Sciences. Vol. 120, No. 5, pp.
619–629, (Nov. 2010).

52


