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Abstract

This paper contains my personal notes on the paper Universal Geometric
Algebra.1 My comments are meant 1) to clarify certain parts of the expo-
sition (especially for readers, like myself, who are not experts in projective
geometry), 2) to fill-in some of the steps in the mathematical derivations,
and 3) to report on a few mistakes that remain in the preprint version
of the paper. As a word of warning, this paper will make no attempt
to teach the fundamentals of geometric/Clifford algebra, though it will
spend some time enhancing the discussion on it presented in the paper.

1 Introduction

This paper is the second of a series of three papers on projective geometry
(and linear algebra) papers written by D. Hestenes and his coauthors. The
first paper was Projective Geometry with Clifford Algebra,2 These papers were
published in the late 1980s and early 1990s. If projective geometry is new to the
reader, I have prepared an introduction to it in my notes on the previous paper,
Projective Geometry with Clifford Algebra. For this paper, I assume that the
reader is familiar enough with projective geometry to follow these notes without
too much explanation on it by me.

At the moment, I have only access to the preprint version of the article.
Therefore, the references I give will be by page number of that version.

It is not my purpose to present a full introduction to geometric algebra in
these notes. However, I will try to flesh-out some of the steps to the equations
that have been left to the reader to provide.

1D. Hestenes, Universal geometric algebra, Quarterly Jour. of Pure and Applied Mathe-
matics, Simon Stevin 62, 253–274, (September – December, 1988).

2D. Hestenes, R. Ziegler, Projective Geometry with Clifford Algebra, Acta Appl. Math.
Vol. 23, 25–63 (1991).
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2 The unreasonable effectiveness of projective
geometry

The projective plane P2 is a plane embedded into a vector space of three dimen-
sions. This embedding is arbitrary, so long as the plane P2 does not contain the
origin. The points in this plane are vectors from the origin of the embedding
space to the point in the plane. But wait. We don’t care about the length of
this vector, so can rescale the vector by any nonzero amount and the new vector
is just as good to represent the point as the original vector.

Line segments (or rather lines) in P2 are the intersections of some oriplane
with the plane P2. An oriplane is a plane in the embedding vector space
that contains the origin. An oriline is a line in the embedding vector space
that contains the origin.3 Basically, there are two related ways to algebraically
represent a given oriplane. One is by its normal vector and the other is by a
bivector that has the same direction in space as does the oriplane. The usual
way to do this is to define a line in P2 as the join of two points in the plane,
say a and b. Thus, in symbolic form, the join of a and b is represented as a∧ b.
Fortunately, a ∧ b is the bivector of the oriplane, and it functions as a typical
bivector in the geometric algebra G3. Thus, the bivector a ∧ b represents an
oriplane, and the oriplane interescts P2 in the line a join b.

The magic here is that the objects that represent points and lines in P2 are
in a dimension of one step higher than in P2. And this facilitates computation.

3 Section 1 of the paper: Geometric Algebra

A multivector is the arbitrary sum of graded parts of the algebra Gn in n
dimensions. Therefore, if we represent our arbitrary multivector by M , then

M =

n∑
k=0

Mk =

n∑
k=0

⟨M ⟩k , (1)

where M0 is the scalar part, M1 is the vector part, all the way up to Mn which
is the pseudoscalar part. The pseudoscalar part of a multivector has properties
that generally depend on n, such as whether or not it commutes with some
other element of the algebra. There is always a unit pseudoscalar, and all other
pseudoscalars are scalar multiples of it. In 3-D space (i.e., G3) the pseudoscalar
commutes with all the elements of G3, which is a highly convenient property.

Let’s begin with a k-blade Mk = a1 ∧ . . . ∧ ak, where the ai’s are vectors.
The dagger operator reverses the ordering of the vectors in the wedge product,
thus

M†
k = ak ∧ . . . ∧ a1 . (2)

So, what’s the relation of M†
k to Mk (Eq. (5) [p.3])? To help us answer this, we

3The plane P2 is any plane in the embedding space that is not an oriplane.
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begin with a lemma: the sum of integers from 1 to n is given as

n∑
j=1

= 1 + 2 + ·+ n =
(n+ 1)n

2
. (3)

Hence,

⟨M† ⟩k = ⟨M ⟩†k = M†
k = ak ∧ . . . ∧ a1

= (−1)k−1a1 ∧ ak ∧ . . . ∧ a2

= (−1)(k−1)+(k−2)a1 ∧ a2 ∧ ak ∧ . . . ∧ a3

= · · ·
= (−1)(k−1)+(k−2)+···+1a1 ∧ a2 · · · ∧ ak

= (−1)k(k−1)/2Mk

= (−1)k(k−1)/2⟨M ⟩k . (4)

Next, we have Eq. (6) [p.3]. Let A = ⟨A ⟩r and B = ⟨B ⟩s both be blades,4

then
A ∧B ≡ ⟨AB ⟩r+s = (−1)rsB ∧A . (5)

So, think of A as a blade of r vectors wedged together, and B as a blade of s
vectors wedged together. To change the order of A and B in the wedge product,
we must make s transpositions for each of r vectors in A. That makes for a
total of rs transpositions, and each transposition gives a factor of (−1).

Next, we have Eq. (7) [p.3].

A ·B = ⟨AB ⟩r−s = (−1)s(r−s)B ·A for r ≥ s . (6)

So, for r ≥ s, [ note: (−1)r(r−1) = 1 for all integers r ]

A ·B = ⟨AB ⟩r−s

= ⟨AB ⟩††r−s

= ⟨B†A† ⟩†r−s

= (−1)(r−s)(r−s−1)/2⟨B†A† ⟩r−s

= (−1)(r−s)(r−s−1)/2(−1)s(s−1)/2(−1)r(r−1)/2⟨BA ⟩r−s

= (−1)r
2+s2−r−rs⟨BA ⟩r−s

= (−1)r(r−1)+s(s−r)⟨BA ⟩r−s

= (−1)s(s−r)⟨BA ⟩r−s

= (−1)s(r−s)⟨BA ⟩r−s

= (−1)s(r−s)B ·A , (7)

4Blades are k-vectors that can be factored into one term of k vectors, wedged together.
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where we used the fact that for any integer n, (−1)n = (−1)−n.

Now we’re at [p.4, Eq. (9)].
Here we introduce the duals of r-blades A = ⟨A ⟩r:

Ã ≡ AI−1 = A · I−1 = (−1)r(n−r)I−1A . (8)

Hint: Use (6) with r → n and s → r.

For Eq. (10) of the preprint, with A = ⟨A ⟩r and B = ⟨B ⟩s,

A · (BI) = (−1)s(n−s)(AI) ·B . (9)

Proof:

A · (BI) = (−1)s(n−s)A · (IB)

= (−1)s(n−s)⟨AIB ⟩n−r−s

= (−1)s(n−s)⟨ (AI) ·B ⟩n−r−s

= (−1)s(n−s)(AI) ·B . (10)

Next, we have Eq. (11) [p.4] of the preprint:

(A ∧B)˜ = A · B̃ = (−1)s(n−s)Ã ·B . (11)

So,

(A ∧B)˜ = (A ∧B)I−1 = ⟨AB ⟩r+sI
−1

= ⟨ABI−1 ⟩n−(r+s)

= (−1)s(n−s)⟨AI−1B ⟩n−(r+s)

= (−1)s(n−s)⟨ ÃB ⟩(n−r)−s

= (−1)s(n−s)Ã ·B . (12)

And then,

(A ∧B)˜ = ⟨ABI−1 ⟩n−(r+s)

= ⟨A(BI−1) ⟩(n−s)−r

= A · B̃ . (13)

4 Section 2 of the paper: The Algebra of Subspaces

We begin with a vector space of n dimensions Vn. It’s crucial to distinguish
between a subspace of a vector space and merely a subset of it. For example,
every line within this vector space is a subset of the space, but only those lines
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through the origin are subspaces. Why? Because a subspace is a vector space
in its own right, and as such, it must contain the origin, which is the zero
vector. For examples, the origin of a vector space by itself is a trivial subspace.
Subspaces of one dimension are the lines through the origin; the planes through
the origin are the subspaces of two dimensions, etc. So, we can in geometric
algebra a subspace of rank r by an r-blade A = ⟨Ar ⟩, where the base of each
vector in A is at the origin.

With that basic understanding, then we can characterize the set of all points
in the subspace spanned by the r vectors in A by (Eq. (12) of the preprint)

{x : x ∧A = 0} , (14)

where we understand that the tip of vector x corresponds to the point of the
subset.

Next we move to Grassmann’s regressive product. [ Eq. (13) of the preprint ]

A ∨B ≡ Ã ·B . (15)

For Eq. (14),

(A ∨B)˜ = Ã ∧ B̃ . (16)

With A = ⟨A ⟩r and B = ⟨B ⟩s, and r + s > n

(A ∨B)˜ = A ∨BI−1

= Ã ·BI−1

= ⟨ ÃB ⟩(n−r)−sI
−1

= ⟨ ÃBI−1 ⟩(n−r)+(n−s)

= ⟨ ÃB̃ ⟩(n−r)+(n−s)

= Ã ∧ B̃ . (17)

Next we have (15) from the preprint: From (11) above

(A ∧ x)˜ = (−1)n−1Ã · x . (18)

Hence,

A ∧ x = (−1)n−1(Ã · x)I−1

= (−1)n−1(Ã · x)I†

= (−1)n−1(−1)n(n−1)/2(Ã · x)I . (19)

Then
(A ∧ x)I−1 = (−1)n−1(−1)n(n−1)/2Ã · x . (20)

Now, reverse A and x on the LHS to get

(−1)r(r−1)/2(x ∧A)I−1 = (−1)n−1(−1)n(n−1)/2Ã · x . (21)

If we set x ∧A = 0, then

0 = (x ∧A)I−1 = Ã · x = a · x . (22)
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5 Section 3 of the paper: Projective Geometry

This section is an overview of the paper Projective Geometry with Clifford Al-
gebra, which is available on David Hestenes’s website. Also, I did my own set
of notes on this paper, which is available on this website.

The important takeaway from this section is that two lines A and B in P2

will intersect if their oriplane bivectors can be factored to reveal a common
vector. Let’s look closer at this. Say we can factor the 2-blades A and B as

A = a ∧ d B = b ∧ d . (23)

(If you think about it, this is necessarily true for oriplanes in 3-D space, be-
cause the oriplanes themselves must intersect in a common line. But projective
geometry can be done in higher dimensional spaces, as well.) Anyway, in this
case of (23), A ∧B = 0. As a consequence,

A ∨B = d . (24)

Because I remember well how confusing this stuff was to me when I first started
to learn it, I’ll state what (24) means in both P2 and in its embedding space
G3. In G3, it means that the two oriplanes corresponding to the two bivectors
(2-blades) A and B meet in the oriline (vector) d. But in P2, those oriplanes
intersect P2 in ‘lines’ A and B, and the vector d ‘intersects’ P2 at ‘point’ d.

So, for arbitrary point d in P2 to be concurrent with arbitrary line C in P2,

d ∧ C = 0 . (25)

Why is this? Because then the oriline represented by vector d is in the oriplane
represented by 2-blade C.

So, if ‘point’ d is itself the meet of two other lines A and B in P2, then we
have Eq. (20) in the preprint:

d ∧ C = (A ∨B) ∧ C = A ∧ (B ∨ C) = 0 . (26)

Okay, so how is it true that A ∧ (B ∨ C) = 0? Well, what we are investigating
is the algebraic condition that three lines in P2 meet at a single point d. But
there is nothing special about how we intially pair off the two lines A and B.
We could have, instead, paired lines B and C first to get d = B ∨ C, in which
case we would have

A ∧ d = 0 , (27)

yielding
A ∧ (B ∨ C) = 0 . (28)
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6 Section 4 of the paper: Linear Algebra

This short overview of linear algebra begins with the standard linear transfor-
mations f from an n-dimensional vector space Vn to itself, namely

f : x → f(x) . (29)

However, corresponding to Vn is the entire geometric algebra Gn. How do all of
its elements transform under f? Well, not at all really, since f is only defined on
the vectors of Gn. However, we can invent a generalization of f that generalizes
f in two ways.

First, we invent a symbol for this generalization, namely, f .

f : x → f(x) = f(x) . (30)

So, f treats the vectors of Gn exactly as does f . Now, in the abstract sense of
a vector space, f treats the many elements of Gn as ‘vectors’ of a linear space.
Therefore, for a generic multivector

M = M0 +M1 + · · ·+Mn , (31)

then
f(M) = f(M0) + f(M1) + · · ·+ f(Mn) . (32)

Further, f commutes with scalars, such as α:

f(αMk) = αf(Mk) . (33)

This is not a necessary requirement of f , but it makes sense, since we would
have to demand it to be true when f acts on vectors.

We haven’t yet given f a name. We’ll call it the outermorphism operator

for simplicity.5

Now, if what has been presented thus far is all there is to say about the
outermorphism, it wouldn’t be of much use to us. The property of it of most
value is how it gets its name, namely by operating on blades, thusly. For the
r-blade A = a1 ∧ a2 ∧ · · · ∧ ar, where, of course, the ai’s are vectors,

f(Ak) ≡ f(a1) ∧ f(a2) ∧ · · · ∧ f(ar) . (34)

We have one last detail to deal with before our definition of the outermor-
phism is complete. How does it map scalars?6 Let’s begin with the easier
question of how it maps the unity 1. Now, it’s an axiom of geometric algebra
that for any k-blade Bk,

1Bk = 1 ∧Bk , (35)

then
f(Bk) = f(1) ∧ f(Bk) , (36)

5For a more rigorous treatment of this subject, see the book by Hestenes and Sobczyk,
Clifford Algebra to Geometric Calculus.

6This has already been implied in (33).
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but this only makes sense if f(1) = 1, in which case

f(1) ∧ f(Bk) = 1 ∧ f(Bk) = 1f(Bk) = f(Bk) . (37)

Now, since f fixes the unity of Gn, it also fixes all positive integers:

f(n) = f(1 + 1 + · · ·+ 1) = f(1) + f(1) + · · ·+ f(1) = 1 + 1 + · · ·+ 1 = n .

So, the logical generalization of this is to insist that the outermorphism fixes all
scalar terms. Let α be a scalar (real number), then,

f(α) = α . (38)

Thus, we arrive at Eq. (27) of the preprint:

f(A ∧B) = f(A) ∧ f(B) , (39)

where A and B are blades.
Well, what about the other end of the blade ‘spectrum’, the pseudoscalar

of the space? We have no reason to insist that the outermorphism fix the
pseudoscalar, therefore, for pseudoscalar I,

f(I) = βI , (40)

where β is some scalar value. It turns out that β = det f , hence

f(I) = (det f)I . (41)

Nonsingular linear transformations can be interpreted as collineations, so
that points are mapped to points and lines are mapped to lines. Proof: Say
that f(x) = x′ and f(A) = A′. Remember that the condition that in P2 that
point x lie on line A is that

x ∧A = 0 . (42)

But we can map this using the outermorphism f to

0 = f(x ∧A) = f(x) ∧ f(A) = x′ ∧A′ . (43)

Therefore, when f(I) ̸= 0 then x′ is in the space of A′.
Of course we who have studied linear algebra know that there exists a map-

ping known as the transpose of a matrix, which in our scheme is the transpose
(or adjoint) of a linear transformation f , denoted f , which is defined implicitly
here as

⟨MfN ⟩ ≡ ⟨N fM ⟩ , (44)

which holds for all multivectors M , N in Gn. Incidentally,

⟨MfN ⟩ = ⟨ (f N)M ⟩ , (45)
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which holds because of equality under cyclic permutation of the geometric
products of multivectors in a scalar-grade selection. In other words, for mul-
tivectors A amd B,

⟨AB ⟩ = ⟨BA ⟩ . (46)

Next in the preprint is the stated relation between the inner product and the
adjoint:

A · (f B) = f [(fA) ·B] , (47)

where step A ≤ step B.7 This leads to

f−1A =
f (AI)I−1

det f
. (48)

There are certain things we can prove about f without too much trouble.
For example, we can show that

f (I) = (det f)I . (49)

Go back to Eq. (44) and let M = N = I, then

⟨ If I ⟩ = ⟨ I fI ⟩ = (det f)I2 . (50)

The only way to make this work is to set f I = αI where α is a scalar to be
determined.

⟨ If I ⟩ = α⟨ II ⟩ = (det f)I2 , (51)

from which we conclude that f I = (det f)I.
We’re now ready to show that (48) follows from (47). First, reset (47) as

C · (f B) = f [(fC) ·B] . (52)

Now, replace B by I:
C · (f I) = f [(fC) · I] , (53)

which simplifies to
(det f)CI = f [(fC)I] . (54)

With just a little alteration we get that

C =
f [f(C)I] · I−1

det f
. (55)

Finally, on the assumption that f−1A exists, let C = f−1A, then

f−1A =
f (A · I)I−1

det f
, (56)

which simplifies to (48).

7This equation can be found as Eq. 1.14a on page 69 of CAGC [3].
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This brings us now to Eq. (33a) in the preprint:

(fA) ∨ (fB) = (det f)f(A ∨B) , (57)

with proof as follows (provided in Design of Linear Algebra and Geometry [p.70,
p.5])

(fA) ∨ (fB) = [ (fA)I−1] · (fB)

= f [ (f [ (fA)I−1 ]) ·B ]

= f [ Ã ·B ](det f)

= (det f)f(A ∨B) , (58)

where
A ∨B = Ã ·B for r + s ≥ n . (59)

To go from line two to line three in the last proof, one can use the results given in
the book Clifford Algebra to Geometric Calculus, Hestenes and Sobczyk, Reidel,
1984, 1987, pg. 69, Eqs. (1.14a,b):

Ar · f (Bs) = f [ f(Ar) ·Bs ] for r ≤ s , (60)

f(Ar) ·Bs = f [Ar · f (Bs) ] for r ≥ s . (61)

On turning (58) around and ignoring the factor of (det f), we have

f(A ∨B) = (fA) ∨ (fB) . (62)

Substituting on the LHS yields

f(Ã ·B) = (fA) ∨ (fB) . (63)

Substituting on the RHS yields

f(Ã ·B) = (fA)˜ · (fB) . (64)

Setting A′ = fA and B′ = fB, we are at last at (33b) in the preprint article,

f(Ã ·B) = Ã′ ·B′ . (65)

7 Section 5 of the paper: Projective Split and
Cross Ratio

Earlier, we saw the points of P2 as represented by vectors in V3. Now we’ll
generalize this to Pn (Vn) as embedded in the vector space Vn+1.

We’ll construct an algebraic relationship between Vn+1 and Vn. We now
define the set of ‘vectors’

Vn = {x ∧ e0 |x ∈ Vn+1} , (66)
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which is Eq. (34) in the preprint paper.
If you take the geometric algebra of this, Gn, you get first the bivectors of

Vn+1, of course. If you take inner products of bivectors, you get scalars. If
you combine the bivectors to make higher-graded objects, you get 4-vectors,
6-vectors, etc. In other words, all that taken together gives us the set of even
elements of Gn+1. But does this set have an algebraic structure? It does. Since
the product of any two even elements of Gn+1 is another even element of Gn+1,
then the set constitutes the even subalgebra of Gn+1.

But what about the set of ‘vectors’ we defined in (66)? Is this really a
’vector’ space? It certainly is under the usual definition of a vector space. It
has a zero vector, namely e0 ∧ e0 = 0. It’s closed under addition of ‘vectors’
and under scalar multiplication, etc.

But wait! If Vn as defined in (66) is a legitimate vector space, then it should
have its own geometric algebra Gn, right? Right.

Anyway, back to analyzing a typical element of Vn, that being x ∧ e0. Let’s
think about this in P2, which is the projective plane in V3. We said that if a
and b are any two distinct points in P2, that we can represent the join of these
points as a∧ b. This join is a line in P2 containing points a and b. Furthermore,
a ∧ b is a 2-blade in G3.

One way to think of P2 that contains the point e0 is that it is the set of all
points in P2 whose joins with e0 are orthogonal to e0. The text claims that
x∧e0 is a linear map from Vn+1 to Vn. Let’s investigate this a bit more formally.
Let L be a map from Vn+1 to Vn,

L : Vn+1 → Vn given by L(x) = x ∧ e0 . (67)

Show that this mapping is linear. Let α be a scalar, then,

L(αx) = (αx) ∧ e0 = α(x ∧ e0) = αL(x) . (68)

So, it treats scalars properly. What about vector addition?

L(x+ y) = (x+ y) ∧ e0 = x ∧ e0 + y ∧ e0 = L(x) + L(y) . (69)

And it treats vector addition properly, hence, it’s a linear map.
We can give the elements of Vn a cosmetic upgrade by letting x0 = x ·e0 ∈ R

and x ≡ x ∧ e0/x · e0 for each x ∈ Vn+1, then

xe0 = x · e0 + x ∧ e0 = x0(1 + x) , (70)

which is Eq. (36) in the preprint paper.

Lemma:
e0x = x0(1− x) . (71)

Proof:

e0x = (xe0)
† = [x0(1 + x ∧ e0) ]

† = x0(1− x ∧ e0) = x0(1− x) . (72)
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We’ll now prove Eq. (37), which is

a ∧ b = a0b0(a− b+ b ∧ a) = a0b0(u+ a ∧ u) , (73)

where e20 = 1, ae0 = a0(1 + a), and be0 = b0(1 + b).
So, for the proof:

a ∧ b = 1
2 (ab− ba)

= 1
2 (ae0e0b− be0e0a)

= 1
2 [ (ae0)(e0b)− (be0)(e0a) ]

= 1
2 [ a0b0(1 + a)(1− b)− a0b0(1 + b)(1− a) ]

= a0b0[a− b+ 1
2 (ba− ba) ]

= a0b0[a− b+ b ∧ a ] . (74)

If we let u ≡ a−b and M ≡ a∧u = b∧a, this last result can be written as

a ∧ b = a0b0(a− b+ b ∧ a) = a0b0(u+ a ∧ u) . (75)

Lemma:
a ∧ b · c = c · b ∧ a = −c · a ∧ b , (76)

where a,b, c are vectors.

Proof:

⟨abc ⟩1 = ⟨abc ⟩†1 = ⟨ cba ⟩1 .

Expanding both sides,

⟨a · bc+ a ∧ bc ⟩1 = ⟨ cb · a+ cb ∧ a ⟩1 .

On dropping a term, gives

⟨a ∧ bc ⟩1 = ⟨ cb ∧ a ⟩1 .

Hence,
a ∧ b · c = c · b ∧ a = −c · a ∧ b , (77)

Now, on to Eq. (38), which is a bit more involved.

x ∧ a ∧ b = x0a0b0[ (a− x) ∧ u+ x ∧ a ∧ u ]e0 = 0 . (78)

The reason this quantity is zero is by design, since we are looking for all x that
lie in the plane described by the 2-blade a ∧ b. So, we begin:

Let B ≡ a ∧ b, then x ∧ a ∧ b can be expressed as x ∧B. Hence,

x ∧B = 1
2 (xB +Bx) . (79)
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Now, it’s time to be a little bit tricky in how we introduce the projective split.
We’ll start by multiplication on the right by e0:

2x ∧Be0 = xBe0 +Bxe0 . (80)

We already have an expression for B = a ∧ b in (75), therefore,

2x ∧Be0 = xBe0 +Bxe0

= x[ a0b0(u+ a ∧ u) ]e0 + [ a0b0(u+ a ∧ u) ]xe0 . (81)

Let Ω = 2x ∧Be0/x0a0b0, then (with e20 = 1)

Ωx0 = x[u+ a ∧ u ]e0 + [u+ a ∧ u ]xe0

= xe0e0[u+ a ∧ u ]e0 + [u+ a ∧ u ]xe0

= x0(1 + x){e0[u+ a ∧ u ]e0}+ [u+ a ∧ u ]x0(1 + x) . (82)

Therefore, some simplification yields

Ω = (1 + x){e0(u+ a ∧ u)e0}+ (u+ a ∧ u)(1 + x) . (83)

So, now everything hinges on how we can get rid of the e0’s in the first term
on the RHS. With the understanding that the vectors a and u are orthogonal
to e0, and that e2 = 1, we get

e0(u+ a ∧ u)e0 = e0ue0 + e0a ∧ ue0

= (2e0 · u− ue0)e0 + ⟨ e0a ∧ ue0 ⟩2
= −u+ e0 · (a ∧ u ∧ e0)

= −u+ a ∧ u . (84)

On substituting this result into (83), we get

Ω = (1 + x)(−u+ a ∧ u) + (u+ a ∧ u)(1 + x)

= −u+ a ∧ u− xu+ xa ∧ u+ u+ ux

+ a ∧ u+ a ∧ ux

= 2a ∧ u+ (ux− xu) + 2x ∧ a ∧ u

= 2a ∧ u+−2x ∧ u+ 2x ∧ a ∧ u

= 2(a− x) ∧ u+ 2x ∧ a ∧ u , (85)

where, on going between steps 2 and 3, we did a lot of cancellation, using, in
particular, (76). Hence, we have (81) becoming

2x ∧Be0/x0a0b0 = 2(a− x) ∧ u+ 2x ∧ a ∧ u . (86)

From this we get

x ∧B = x0a0b0[ (a− x) ∧ u+ x ∧ a ∧ u ]e0 . (87)
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Using that B = a ∧ b, we have that

x ∧ a ∧ b = x0a0b0[ (a− x) ∧ u+ x ∧ a ∧ u ]e0 . (88)

For x ∧ a ∧ b to vanish, we need

(a− x) ∧ u = 0 and x ∧ a ∧ u = 0 . (89)

Now we have arrived at a fun part of the paper: the part that proves the
invariance of the cross ratio. So, we start with three distinct points a, b, c on
a given line in P2. (We deduce that the wedge product of any two of them is a
nonzero scalar multiple of the wedge product of any other two of them.)

So, if we can show that

b0a ∧ c(b− c) = a0(b ∧ c)(a− c) , (90)

then we can write
a ∧ c

b ∧ c
=

a0(a− c)

b0(b− c)
=

a0
b0

a− c

b− c
, (91)

which is Eq. (39) in the preprint paper.
In preparation, we need a couple results first. For one, b − c is related to

a− c by a factor of a nonzero scalar multiple,8 say α, or

b− c = α(a− c) . (92)

Now, on wedging this last result by c on the left, we get the next result

c ∧ b = αc ∧ a . (93)

We also need the following lemma. Starting with

a ∧ c = a0c0(a− c+ c ∧ a) , (94)

we get that

α(a ∧ c) = a0c0(α(a− c) + αc ∧ a)

= a0c0((b− c) + c ∧ b)

=
a0
b0

b0c0((b− c) + c ∧ b)

=
a0
b0

b ∧ c . (95)

So, let’s start on the LHS of (90) and proceed to the RHS.

b0a ∧ c (b− c) = a ∧ c b0α(a− c)

= α(a ∧ c) b0(a− c)

=
a0
b0

b ∧ c b0(a− c) (using (95))

= b ∧ c a0(a− c)

= a0(b ∧ c)(a− c) . (96)

8This is because points a, b, and c lie on the same line.
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However, Eq. (91) has the scalars a0 and b0, thus this relation, being based
on only three points, is not the invariant relationship we seek. To find it, let’s
substitute d for c (where d is yet another distinct point on the same line) in (91)
to get

a ∧ d

b ∧ d
=

a0(a− d)

b0(b− d)
=

a0
b0

a− d

b− d
, (97)

If we now divide (91) by (97) we get

a ∧ c

b ∧ c

b ∧ d

a ∧ d
=

a− c

b− c

b− d

a− d
, (98)

which is Eq. (40) of the preprint paper and is also the invariant cross ratio,
based on four distinct points.

8 Conclusion

There is more to this article, but this is as far as I intend to go into it at this
time. The reason is because there are other Hestenes articles and presentations
by Chris Doran and others that are more extensive and clearer.
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