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Abstract

This paper contains my personal notes on the paper Local Observables
in the Dirac Theory by David Hestenes.1 My comments are meant 1) to
fill-in some of the steps in the mathematical derivations, and 2) to report
on a few mistakes that remain in the “preprint” version of the paper.
As a word of warning, this paper will make no attempt to teach the full
fundamentals of geometric/Clifford algebra, though it will spend some
time enhancing the discussion on it presented in the paper. Nevertheless,
this paper emphasizes the mathematics rather than the physics.

Introduction

The paper referenced is available on line as a “preprint” at

http://geocalc.clas.asu.edu/html/GAinQM.html .

However, the preprint has some errors in it and I shall endevour to point them
out as I find them. However, the published article has a few errors as well, and
I’ll point them out too, as I find them.

I want to point out that I consulted the following paper (the first three
pages) by Stephen Gull when I sought to correct the errors in the “preprint”
version of the paper:

https://www.mrao.cam.ac.uk/~steve/MONOPOLE.pdf .

I assume that the reader has a pretty good grasp on geometric algebra, as
this is necessary to follow the presentation. There are many books that can be
purchased to learn this algebra, and many on-line articles — some free, some
not — that can be acquired.

1D. Hestenes, “Local Observables in the Dirac Theory,” J. Math. Phys. Vol. 14, July
(1973). p.893–905
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1 The Wave Function

We introduce our formulation of the wavefunction as follows (Eq. (1.1)):

ψ = ρ1/2e
1
2 iβR , (1)

where ρ and β are scalars of the theory, which will be explained later. R is an
even multivector.

We can think of Eq. (1) as a canonical factorization of the wavefunction in
analogy to how one factors matrices into some canonical factorization.2 We’ll
properly define i soon.

We think of R as a Lorentz rotation operator with constraint

RR̃ = 1 , (2)

where the˜operator reverses the ordering of all geometric products. Scalars and
vectors are, of course, invariant under the reversion operation. We get that

ψψ̃ = ρeiβ , (3)

where ρ is the proper probabillity density.
Next, we define a mutually orthogonal set of vectors γµ (µ = 0, 1, 2, 3) to

form a frame, with γ20 = 1 and the rest square to −1.
The following are basic results that we’ll use throughout the rest of the

paper:
i ≡ γ0γ1γ2γ3 . (4)

i∼ = i . (5)

The proof of this is that it requires an even number of transpositions to bring

i∼ = γ3γ2γ1γ0 (6)

back to the original form γ0γ1γ2γ3 = i.
As a consequence

(eiβ)∼ = eiβ . (7)

For all γµ (µ = 0, 1, 2, 3):
γµ i = −iγµ , (8)

and as a consequence,

γµe
iβ = γµ(cosβ + i sinβ) = (cosβ − i sinβ)γµ = e−iβγµ . (9)

The function of the spinor R is to rotate this frame according to the rule

eα = Rγα R̃ (α = 0, 1, 2, 3) , (10)

2See Appendix A for a correlation of the conventional matrix version of the Dirac theory
to the geometric algebra version.
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which is Eq. (1.2). It’s pretty easy to see that if B is any bivector, then Bi = iB.
And, as a consequent, eiβB = Beiβ . It’s likewise easy to see that for any even
multivector M = ⟨M ⟩+, Mi = iM and eiβM = Meiβ , which is why eiβ

commutes with R, and for that matter with R̃.
By convention, the vectors e0 = v and e3 are granted special physical mean-

ing in the theory. The first is the local particle velocity in spacetime and the
second is the local spin direction. My question now is, How much does this
conventionalization restrict the choice of how to generalize the Dirac equation
(24) to the first generalization of it here in Eq. (25)?

We find the probability current as

ψγ0ψ̃ = ρRγ0R̃ = ρv , (11)

which is Eq. (1.3). Let’s prove this.

ψγ0ψ̃ = (ρ1/2e
1
2 iβR)γ0(ρ

1/2e
1
2 iβR)

∼

= (ρ1/2e
1
2 iβR)γ0(R̃(e

1
2 iβ)∼ρ1/2)

= ρ(e
1
2 iβR)γ0(R̃e

1
2 iβ) = ρe

1
2 iβRγ0e

1
2 iβR̃

= ρe
1
2 iβe−

1
2 iβRγ0R̃

= ρRγ0R̃ = ρv . (12)

For the local conservation of probability we have Eq. (1.4):

□ · (ρv) = 0 . (13)

The proper mass density is mρ. The local spin vector is Eq. (1.5):

s =
ℏ
2
e3 , (14)

which converts the ‘physical spin direction’ e3 to an angular momentum vector
s. We define the bivector version of the spin as

S ≡ isv =
ℏ
2
ie3e0 =

ℏ
2
e2e1 =

ℏ
2
Rγ2γ1R̃ , (15)

which is Eq. (1.6).
Although the frame of γµ’s is arbitrary, the instantaneous comoving frame

of γµ’s is intrinsic to the electron itself, and the rotor R connects them.
Equation (1.7) in the article is given as

R = (ÃA)−1/2A , (16)

for some field A. We show that RR̃ = 1:

RR̃ = (ÃA)−1/2A[(ÃA)−1/2A]∼

= (ÃA)−1/2AÃ(ÃA)−1/2

= (ÃA)−1/2AÃ(ÃA)−1/2

= (ÃA)−1AÃ

= 1 . (17)
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At this point I want to perform a calculation. But I need some prelimi-
nary results first. Let’s begin with this: Anytime we take the scalar part of a
geometric product of multivectors, we can cyclicly permute them as follows:

⟨ABCD · · ·Z ⟩ = ⟨BCD · · ·ZA ⟩ = ⟨CD · · ·ZAB ⟩ = etc. . (18)

And, of course, we can also cyclically permute going the opposite direction.

So, I wish to prove that s · v = 0. This makes sense, since v is a timelike
vector in a given frame and s is a spacelike vector in the same frame.

Also, since ψψ̃ = ρeiβ , then

ψ̃(ψψ̃)ψ = ψ̃(ρeiβ)ψ = ψ̃ψ(ρeiβ) , (19)

or
(ψ̃ψ)2 = ψ̃ψ(ρeiβ) , (20)

Barring the case that ψ̃ψ = 0, then

ψ̃ψ = ρeiβ . (21)

So,

s · v = (
ℏ
2
ψγ3ψ̃) · (ψγ0ψ̃)

=
ℏ
2
⟨ψγ3ψ̃ψγ0ψ̃ ⟩

=
ℏ
2
⟨ψγ3(ρeiβ)γ0ψ̃ ⟩

=
ℏ
2
⟨ ψ̃ψ(ρe−iβ)γ3γ0 ⟩

=
ℏρ2

2
⟨ eiβ(e−iβ)γ3 ∧ γ0 ⟩

=
ρ2ℏ
2

⟨ γ3 ∧ γ0 ⟩

= 0 , (22)

since the contents inside the selector is pure bivector. (Remember that the γµ’s
are an orthormal set, given that γµ · γν = δµν .)

One more result. Let’s show that v · S = 0, using that v2 = 1.

v · S = v · (isv) = ⟨ visv ⟩
= ⟨ vvis ⟩ = ⟨ is ⟩
= 0 . (23)
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2 Energy-Momentum Tensor

According to Dirac, the total energy of an electron in a stationary state is given
as

(−1)1/2ℏ∂tΨ = EΨ , (24)

which is Eq. (2.1). Of course, in this last equation, Ψ is a column spinor. But
in the geometric algebra of spacetime, we can rewrite this as Eq. (2.2):

∂tψγ2γ1ℏ = Eψ , (25)

where γ2γ1 is a bivector that defines a plane of rotation, can be re-expressed as

γ2γ1 = iγ3γ0 = iσ3 . (26)

We ‘guess’ at a proper generalization of (24) as Eq. (2.3):

Tµν = ⟨ γ0ψ̃γµ(∂νψγ2γ1ℏ− eAνψ) ⟩

= ℏ⟨ γµ(∂νψ)γ2γ1γ0ψ̃ ⟩ − eAν⟨ γ0ψ̃γµψ ⟩

= ℏ⟨ γµ(∂νψ)iγ3ψ̃ ⟩ − eAν⟨ (ψγ0ψ̃)γµ ⟩

= ℏ⟨ γµ(∂νψ)iγ3ψ̃ ⟩ − eρvµAν , (27)

where we have corrected a typo in the first line involving the gamma next to
the ℏ. So, let’s investigate how this demonstration works. In the third line we
used (11) and the fact that

⟨ vγµ ⟩ = v · γµ = vµ . (28)

The average energy in inertial system γ0 is

⟨E ⟩ =
∫
d3x (T00 + eρv0A0) . (29)

If we rewrite (27) as

Tµν + e⟨ γ0ψ̃γµAν ⟩ = ℏ⟨ γµ(∂νψ)γ2γ1γ0ψ̃ ⟩ , (30)

and then set µ = ν = 0, we get [Note: ∂0 = ∂t]

T00 + e⟨ γ0ψ̃γ0A0 ⟩ = ℏ⟨ γ0(∂0ψ)γ2γ1γ0ψ̃ ⟩ , (31)

or
T00 + eρv0A0 = ⟨ γ0(∂0ψ)γ2γ1γ0ψ̃ℏ ⟩ = ⟨ γ0ψ̃γ0(∂0ψ)γ2γ1ℏ ⟩ . (32)

Therefore, (29) becomes

⟨E ⟩ =
∫
d3x (T00 + eρv0A0) =

∫
d3x ⟨ γ0ψ̃γ0(∂0ψ)γ2γ1ℏ ⟩

= E

∫
d3x ⟨ γ0ψ̃γ0ψ ⟩ , (33)
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since
∂0ψγ2γ1ℏ = Eψ . (34)

But
⟨ γ0ψ̃γ0ψ ⟩ = ⟨ψγ0ψ̃γ0 ⟩ = ⟨ ρvγ0 ⟩ = ρv0 ≡ ρ0 , (35)

which is Eq. (2.6). Therefore, (33) becomes

⟨E ⟩ = E

∫
d3x ρ0 = E , (36)

which is Eq. (2.5).
We are now to review Tetrode’s version of the electron’s energy-momentum

tensor in geometric algebra. See Appendix A for the matrix version.
T (n) is a linear tensor that denotes the energy-momentum flux through a

hypersurface of nornal n. Hence,

T (n) = nµT (γµ) = nµTµ , (37)

which is Eq. (2.7). Obviously, Tµ is a vector quantity. To get the 16 components
of T , we have

Tµν = Tµ · γν and Tµ = Tµνγ
ν , (38)

which is Eq. (2.8a,b). The proper energy-momentum density is

ρp = T (v) = vµTµ , (39)

which is Eq. (2.9). We can write Tµ as (2.10):

Tµ = ρvµp+Nµ , (40)

where Nµ is normal to the streamlines, and, of course, vµvµ = 1. The Nµ are
as yet unconstrained degrees of freedom, except that we require that vµNµ = 0
so that we can recoup (39) from (40). We’ll return to this tensor later.

We define the “transposed” tensor of Tµν (Eq. (2.11)) as

Tµ = γνTµν = γν [ ℏγν · ⟨ ∂µψiγ3ψ̃ ⟩1 − eρvνAµ ]

= ℏ⟨ ∂µψiγ3ψ̃ ⟩1 − eρvAµ , (41)

where the v in the right term on the bottom line does not have a subscript, and
thus corrects a typo.

However, this does not yield the correct result using the value for Tµν as
given in (27).

To get Eq. (2.3) of the paper, I used

Tµν = ⟨ γ0ψ̃γµ(∂νψ)γ2γ1ℏ− eAνψ ⟩

= ⟨ γ0ψ̃γµ(∂νψ)γ2γ1ℏ ⟩ − ⟨ eAνγ0ψ̃γµψ ⟩

= ℏ⟨ ψ̃γµ(∂νψ)γ2γ1γ0 ⟩ − ⟨ eAνψγ0ψ̃γµ ⟩

= ℏ⟨ ψ̃γµ(∂νψ)iγ3 ⟩ − eρ⟨Aνvγµ ⟩

= ℏ⟨ γµ(∂νψ)iγ3ψ̃ ⟩ − eρAν⟨ vγµ ⟩ . (42)
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So, we have the special case

T00 = ℏ⟨ γ0(∂0ψ)iγ3ψ̃ ⟩ − eρA0⟨ vγ0 ⟩ , (43)

Or,
T00 + eA0ρv0 = ℏ⟨ γ0(∂0ψ)iγ3ψ̃ ⟩ , (44)

where v0 = ⟨ vγ0 ⟩.
Then,

Tµ ≡ γνTµν = γν [ ℏ⟨ γν(∂µψ)iγ3ψ̃ ⟩ − eρvνAµ ]

= ℏγν⟨ γν(∂µψ)iγ3ψ̃ ⟩ − eρvAµ

= ℏγνγν · ⟨ (∂µψ)iγ3ψ̃ ⟩1 − eρvAµ

= ℏ⟨ (∂µψ)iγ3ψ̃ ⟩1 − eρvAµ (45)

For our next result, we employ a simple identity. Let A be vector valued.
Then,

2A = A+ Ã , (46)

since Ã = A. Note that ĩ = i and iγµ = −γµi, and for any multivector M ,

M̃
∼
=M :

2⟨ ∂µψiγ3ψ̃ ⟩1 = ⟨ ∂µψiγ3ψ̃ ⟩1 + ⟨ ∂µψiγ3ψ̃ ⟩∼1
= ⟨ ∂µψiγ3ψ̃ ⟩1 + ⟨ψγ3ĩ∂µψ̃ ⟩1
= ⟨ ∂µψiγ3ψ̃ ⟩1 + ⟨ψγ3i∂µψ̃ ⟩1
= ⟨ ∂µψiγ3ψ̃ ⟩1 − ⟨ψiγ3∂µψ̃ ⟩1 . (47)

Therefore, we’ve arrived at Eq. (2.12):

ℏ⟨ ∂µψiγ3ψ̃ ⟩1 =
ℏ
2
[ ⟨ ∂µψiγ3ψ̃ ⟩1 − ⟨ψiγ3∂µψ̃ ⟩1 ] . (48)

From Eq. (1.5) of the text, we get

1
2ℏψγ3ψ̃ = ρs , (49)

from which we get
iρs = 1

2ℏψiγ3ψ̃ . (50)

With this result, (48) becomes (by use of the product rule, which works so simply
because ∂µ is a scalar operator):

∂µ(iρs) =
ℏ
2
[ ∂µψiγ3ψ̃ + ψiγ3∂µψ̃ ] , (51)

which is Eq. (2.13). It’s important to note that to reduce the number of paren-
theses in a given expression, Hestenes has apparently followed the rule that the
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action of a derivative on an expression extends only to the variable closest to it
on its right. Therefore, we interpret

∂µψiγ3ψ̃ as (∂µψ)iγ3ψ̃ . (52)

I sometimes make this explicit, which is why my use of parentheses is a bit
different than that of Hestenes.

On multiplying (51) through by γµ, we get

□(iρs) =
ℏ
2
[ (□ψ)iγ3ψ̃ + γµψiγ3∂µψ̃ ]

=
ℏ
2
[ (□ψ)iγ3ψ̃ + γµ⟨ψiγ3∂µψ̃ ⟩1 ]

=
ℏ
2
[ (□ψ)iγ3ψ̃ + γµ⟨ψiγ3∂µψ̃ ⟩∼1 ]

=
ℏ
2
[ (□ψ)iγ3ψ̃ − γµ⟨ ∂µψiγ3ψ̃ ⟩1 ] , (53)

which is off by a factor of 2. Obviously, I need more work on this to get the
text’s result:

ℏ(□ψ)iγ3ψ̃ = ℏγµ⟨ ∂µψiγ3ψ̃ ⟩1 +□(iρs) , (54)

which is Eq. (2.14).
As presented in Ref. [5], the Dirac equation is

ℏ□ψiγ3γ0 = mψγ0 + eAψ , (55)

which is (2.15). Next, we multiply on the right by γ0ψ̃, remembering that

ψψ̃ = ρeiβ , to get Eq. (2.16):

ℏ□ψiγ3ψ̃ = mρeiβ + eAρv , (56)

where I am interpreting the LHS as meaning

ℏ□ψiγ3ψ̃ = ℏ(□ψ)iγ3ψ̃ . (57)

To modify this last result to get the next one, we need the following facts:

ρp = vµTµ , (58a)

Tµ = ℏ⟨ ∂µψiγ3ψ̃ ⟩1 − eρvAµ , (58b)

ℏ(□ψ)iγ3ψ̃ = ℏγµ⟨ ∂µψiγ3ψ̃ ⟩1 +□(iρs) . (58c)

We begin by multiplying (58b) on the left by γµ:

γµTµ = ℏγµ⟨ ∂µψiγ3ψ̃ ⟩1 − eAρv . (59)

Next, we use (58c) to get

γµTµ = ℏ(□ψ)iγ3ψ̃ −□(iρs)− eAρv . (60)
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Then we use (56) to get Eq. (2.17):

γµTµ = mρeiβ −□(iρs) = mρeiβ + i□(ρs) , (61)

which is true because i anticommutes with all vectors, and □ act to i as just a
vector.

To find the pseudoscalar part of (61), we first expand it:

γµTµ = mρ(cosβ + i sinβ) + i□ · (ρs) + i□ ∧ (ρs) . (62)

Thus, the pseudoscalar part is

0 = mρ sinβ +□ · (ρs) , (63)

which gives us Eq. (2.18)

□ · (ρs) = −mρ sinβ . (64)

The trace of the Tetrode tensor Tµ
µ comes from the scalar part of (62):

γµ · Tµ = Tµ · γµ = mρ cosβ , (65)

which is (2.19). The bivector part of (61) yields (2.20)

γµ ∧ Tµ = Tµ ∧ γµ = i(□ ∧ ρs) = −□ · (iρs) . (66)

Let me demonstrate this reasoning. Let a be a vector, then

i(□ ∧ a) = ⟨ i□ ∧ a ⟩2
= ⟨ i□a ⟩2
= ⟨−□ia ⟩2
= −□ · (ia) . (67)

Changing the dummy indices of summation in (62), we can write

Tβ ∧ γβ = (γα ∧ γβ)Tβα . (68)

The easiest way to prove this is to start on the RHS and derive the LHS using
(38).

(γα ∧ γβ)Tβα = (Tβαγ
α ∧ γβ) = Tβ ∧ γβ . (69)

On multiplying by an antisymmetric operator:

(γµ ∧ γν) · Tβ ∧ γβ = (γµ ∧ γν) · (γα ∧ γβ)Tβα = Tµν − Tνµ , (70)

where we used the identity

(γµ ∧ γν) · (γα ∧ γβ) = δαν δ
β
µ − δαµδ

β
ν . (71)
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Hence, the first part of (2.21):

(γµ ∧ γν) · (γα ∧ γβ)Tβα = (δαν δ
β
µ − δαµδ

β
ν )Tβα = Tµν − Tνµ . (72)

Now we refer back to (70) and get the second part of (2.21):

(γµ ∧ γν) · [ i(□ ∧ ρs) ] = iγµ ∧ γν ∧□ ∧ (ρs) = −ϵµναβ∂α(ρsβ) . (73)

Going back to (58b) and taking the partial by µ, we get Eq. (2.23):

∂µT
µ = ℏ∂µ⟨ (∂µψ)iγ3ψ̃ ⟩1 − e∂µ(ρvA

µ)

= ℏ⟨ (□2ψ)iγ3ψ̃ ⟩1 − e∂µ(ρvA
µ) , (74)

where, of course, □2 = ∂µ∂
µ. Okay, so now we differentiate Tµ, which we get

from (40) in the raised form as

Tµ = ρvµp+Nµ . (75)

Then,
∂µT

µ = ∂µ(ρv
µp) + ∂µN

µ . (76)

Equation (2.22) claims that

∂µT
µ = ∂µT

µ , (77)

but I don’t at this time have a proof for this.
Now, we wish to express the first term on the RHS of (74) in terms of

observables. First, we take the gradient of (55):

ℏ□2ψiγ3γ0 = m□ψγ0 + e□Aψ . (78)

Next, we multiply on the right by γ0ψ̃:

ℏ(□2ψ)iγ3ψ̃ = m(□ψ)ψ̃ + e(□Aψ)γ0ψ̃ . (79)

Now, we try to get Eq. (2.24), which is

ℏ□2ψiγ3ψ̃ = ℏ−1(e2A2 −m2)iρs+ e(□A)ρv + 2e(A ·□ψ)γ0ψ̃ . (80)

To arrive at this last equation from the equation before it, we need to do
two things. The first is to expand the expession □Aψ. The second thing is to
‘remove’ all gradients of ψ; that is, expressions of the form □ψ. We can look to
the Dirac equation for the suitable expression to use to replace it with.

We begin by expanding □Aψ

□Aψ = □̇Ȧψ̇

= (□A)ψ + (□̇Aψ̇)

= (□A)ψ + (2A ·□ψ −A□ψ)

= (□A)ψ + 2(A ·□ψ)− (A□ψ) . (81)
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So, the second term on the RHS of (79) becomes

e(□Aψ)γ0ψ̃ = e[ (□A)ψ + 2(A ·□ψ)− (A□ψ) ]γ0ψ̃

= e[ (□A)ψγ0ψ̃ + 2(A ·□ψ)γ0ψ̃ − (A□ψ)γ0ψ̃ ]

= e[ (□A)ρv + 2(A ·□ψ)γ0ψ̃ − (A□ψ)γ0ψ̃ ] . (82)

Substituting this last result into (79), we have that

ℏ(□2ψ)iγ3ψ̃ = m(□ψ)ψ̃ + e[ (□A)ρv + 2(A ·□ψ)γ0ψ̃ − (A□ψ)γ0ψ̃ ]

= m(□ψ)ψ̃ − e(A□ψ)γ0ψ̃ + e(□A)ρv + 2e(A ·□ψ)γ0ψ̃ . (83)

Let’s now restate the Dirac equation and then solve it for □ψ.

ℏ□ψiγ3γ0 = mψγ0 + eAψ . (84)

First, we multiply through by ℏ−1:

□ψiγ3γ0 = ℏ−1[mψγ0 + eAψ ] . (85)

Next, we multiply through on the right by γ0γ3i, to get

□ψ = ℏ−1[mψγ0 + eAψ ]γ0γ3i

= ℏ−1[mψγ3 i+ eA(ψγ0γ3 i) ] . (86)

Thus, m(□ψ)ψ̃ becomes

m(□ψ)ψ̃ = mℏ−1[mψγ3iψ̃ + eAψγ0γ3iψ̃ ]

= mℏ−1[−miψγ3ψ̃ + eAiψγ0γ3ψ̃ ]

= mℏ−1[−miρs+ eAiψγ0γ3ψ̃ ] . (87)

Now, we do similarly to e(A□ψ)γ0ψ̃:

e(A□ψ)γ0ψ̃ = eℏ−1A[mψγ3i+ e(ψγ0γ3i) ]γ0ψ̃

= eℏ−1A[mψγ3 i+ e(ψγ0γ3i) ]γ0ψ̃

= eℏ−1A[−miψγ3γ0ψ̃ − eAiψγ3ψ̃ ]

= eℏ−1A[−miψγ3γ0ψ̃ − eAiρs ] . (88)

Substituting these into (83), we get

ℏ(□2ψ)iγ3ψ̃ = mℏ−1[−miρs+ eAiψγ0γ3ψ̃ ]− eℏ−1A[−miψγ3γ0ψ̃ − eAiρs ]

+ e[ (□A)ρv + 2(A ·□ψ)γ0ψ̃ ]

= ℏ−1[−m2iρs+ emAiψγ0γ3ψ̃ ]− ℏ−1[meAiψγ0γ3ψ̃ − e2A2iρs ]

+ e[ (□A)ρv + 2(A ·□ψ)γ0ψ̃ ]

= ℏ−1[−m2iρs+ e2A2iρs ] + e(□A)ρv + 2e(A ·□ψ)γ0ψ̃

= ℏ−1(e2A2 −m2)2iρs+ e(□A)ρv + 2e(A ·□ψ)γ0ψ̃ , (89)
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where the two terms involving iψγ0γ3ψ̃ cancelled each other. And this is Eq.
(2.24).

Going on. We want the vector part of (89). We begin with the identity

⟨ e(□A)ρv ⟩1 = eρ(□ ∧A) · v + e(□ ·A)ρv . (90)

So, the vector part of (89) is

ℏ⟨ □2ψiγ3ψ̃ ⟩1 = eρ(□ ∧A) · v + e(□ ·A)ρv + 2e⟨ (A ·□ψ)γ0ψ̃ ⟩1 . (91)

and we need a more elegant expression for the last term. We start with the
familiar equation

ψγ0ψ̃ = ρv . (92)

On differentiating this by A ·□, we get

(A ·□ψ)γ0ψ̃ + ψγ0(A ·□)ψ̃ = A ·□(ρv) . (93)

But (A ·□ψ)γ0ψ̃ = ψγ0(A ·□)ψ̃, so

2⟨ (A ·□ψ)γ0ψ̃ ⟩1 = A ·□(ρv) . (94)

Therefore, (91) becomes

ℏ⟨ □2ψiγ3ψ̃ ⟩1 = eρ(□ ∧A) · v + e(□ ·A)ρv + eA ·□(ρv) , (95)

which is the second result of (2.25). But this equation can be put into a simpler
form, beginning with the fact that □ ∧ A = F . We can also perform some
‘tensor’ operations:

e∂µ(ρvA
µ) = e∂µ(ρv)A

µ + eρv∂µA
µ

= eA ·□(ρv) + e(□ ·A)ρv . (96)

Hence, (95) becomes

ℏ⟨ □2ψiγ3ψ̃ ⟩1 = eρF · v + e∂µ(ρvA
µ) , (97)

which is (2.25).
Now, defining f = F · v and using (74) and (77), we get

∂µT
µ = ρeF · v = ρf . (98)

Then, coupling this with (40), we get part of Eq. (2.26):

∂µT
µ = ∂µ(ρv

µp) + ∂µN
µ

= ∂µ(ρv
µ)p+ ρvµ∂µp+ ∂µN

µ

= ρv ·□ p+ ∂µN
µ

= ρṗ+ ∂µN
µ = ρeF · v = ρf , (99)
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where we have assumed that ∂µ(ρv
µ) = 0. But this is easy to prove using

tensors. First, recall that
□ · (ρv) = 0 . (100)

So that

□ · (ρv) = γν∂ν · (ρvµγµ)
= γν · γµ∂ν(ρvµ)
= δνµ ∂ν (ρv

µ)

= ∂µ (ρv
µ) = 0 . (101)

Equation (2.27) is

∂µ(T
µ ∧ x) = ∂µ(T

µ ∧ x) + ∂µ(T
µ ∧ x)

= ρf ∧ x+ Tµ ∧ γµ . (102)

With help from (66) we have Eq. (2.28):

Tµ ∧ γµ = −∂µSµ . (103)

For the next equation, we remember that S = isv.

Sµ = ρis ∧ γµ = ρ(is) · γµ = ρ(S ∧ v) · γµ . (104)

Now,

(S ∧ v) · γµ = ⟨Svγµ ⟩2 = −⟨Svγµ ⟩∼2
= −⟨ γµvS̃ ⟩2 = ⟨ γµvS ⟩2
= γµ · (v ∧ S) = γµ · vS + vγµ · S
= vµS + S · γµv . (105)

Thus, Eq. (2.29) is
Sµ = ρvµS + ρS · γµv . (106)

If we define the vector Jµ as in Eq. (2.30):

Jµ ≡ Tµ ∧ x+ Sµ , (107)

then, using (103), we can rewrite (102) as

∂µJ
µ = ρf ∧ x , (108)

which is (2.31). The proper angular momentum density is given as

J(v) = vµJ
µ = vµT

µ ∧ x+ vµS
µ , (109)

which is almost (2.32). For the first term on the RHS, we have that

vµT
µ ∧ x = ρp , (110)
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which used (39). Now, using that

S = ρ−1vµS
µ = is ∧ v , (111)

then, finally, (2.32):
J(v) = ρ(p ∧ x+ S) . (112)

Remembering that vµv
µ = 1, for the second term we have

vµS
µ = ρvµv

µS + ρS · (vµγµ)v
= ρS + ρS · vv
= ρS , (113)

since S · v = 0.
Using (103) and (107) we get

∂µJ
µ = ∂µ(T

µ ∧ x) + ∂µS
µ

= (∂µT
µ) ∧ x+ Tµ ∧ γµ + ∂µS

µ

= (∂µT
µ) ∧ x . (114)

Defining Mµ as
Mµ ≡ ρS · γµv , (115)

which is Eq. (2.33). Then

∂µM
µ = ∂µ(ρS · γµv) . (116)

All this can be combined to yield Eq. (2.34):

ρṠ + ρp ∧ v = γµ ∧Nµ − ∂µM
µ , (117)

and Ṡ = v ·□S. (By the way, we have corrected here an error in the preprint.)

3 Local Momentum and angular velocity

Starting with
eα = RγαR̃ , (118)

we get Eq. (3.1):

γµ ·□eα = ∂µeα = 1
2 [ Ωµ, eα ] = Ωµ · eα , (119)

where
Ωµ ≡ 2(∂µR)R̃ . (120)

Proof:
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Let’s begin with RR̃ = 1 and differentiate it by ∂µ = γµ ·□, to get

(∂µR)R̃ = −R∂µR̃ . (121)

By first taking the reverse on both sides of this, we can then solve it for ∂µR̃,
to get

∂µR̃ = −R̃(∂µR)R̃ . (122)

Therefore

γµ ·□ eα = ∂µeα = ∂µRγαR̃

= (∂µR)γαR̃+Rγα∂µR̃

= (∂µR)R̃RγαR̃−RγαR̃(∂µR)R̃

= (∂µR)R̃eα − eα(∂µR)R̃

= 1
2Ωµeα − 1

2eαΩµ

= 1
2 [ Ωµ, eα ] = Ωµ · eα . (123)

The frame of eµ rotates with angular velocity Ωµ. To make this meaningful,
we must express this rotation in terms of local variables. To that end, define
Pµ and qµ according as

Pµ + iqµ =
ℏ
2
(∂µRγ2γ1R̃−Rγ2γ1∂µR̃) , (124)

which is Eq. (3.3). Remembering that

S ≡ isv =
ℏ
2
e2e1 =

ℏ
2
Rγ2γ1R̃ , (125)

then

∂µS =
ℏ
2
(∂µRγ2γ1R̃+Rγ2γ1∂µR̃) . (126)

We also get (first by virtual emplacement of 1 = R̃R and then by using the
recent definitions) that

ℏ(∂µR)γ2γ1R̃ = [ (2∂µR)R̃ ](
ℏ
2
Rγ2γ1R̃) = ΩµS , (127)

which is Eq. (3.5). Adding (124) and (126), we get (3.6):

Pµ + iqµ + ∂µS = ΩµS = ℏ∂µRγ2γ1R̃ . (128)

Taking the scalar part of this, we get Eq. (3.7):

Pµ = Ωµ · S = ℏ⟨ ∂µRγ2γ1R̃ ⟩ . (129)

To get at the pseudoscalar part of (128), we may multiply through by −i and
then take the scalar part of the result [Eq. (3.8)]:

qµ = −iΩµ ∧ S = ℏ⟨ (−i)∂µRγ2γ1R̃ ⟩ , (130)
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which corrects a misprint in the preprint and a couple in the published article.
Last, but not least, is the bivector part of (128):

∂µS = Ωµ × S . (131)

Adding in some identitites, we get

∂µS = Ωµ × S = 1
2 (ΩµS − SΩµ) =

1
2 [ Ωµ, S ] , (132)

which is Eq. (3.9)
Now, we solve for Ωµ, using (128), we get (3.10):

Ωµ = (∂µS + Pµ + iqµ)S
−1

= s(∂µv)vs
−1 + (∂µs)s

−1 + qµvs
−1 + PµS

−1 , (133)

where S−1 = |S |−2S̃ = is−1v, s−1 = −| s |−2s.

Proof: For my proof, I use that S = ivs, and S−1 = −vs−1i. Then I just take
the partial derivative:

∂µS = ∂µ(isv) = i[ (∂µs)v + s(∂µv) ] . (134)

Therefore

(∂µS)S
−1 = (∂µs)s

−1 + s(∂µv)vs
−1 . (135)

So, (136) gives us

Ωµ = (∂µS)S
−1 + PµS

−1 + iqµS
−1

= s(∂µv)vs
−1 + (∂µs)s

−1 + qµvs
−1 + PµS

−1 , (136)

which is Eq. (3.10). Next, we need to re-express qµ. We begin with

∂µv = Ωµ · v . (137)

On dotting (136) by v, we get (where v · s = 0 implies that v · s−1 = 0)

Ωµ · v = [ s(∂µv)vs
−1 + (∂µs)s

−1 + qµvs
−1 + PµS

−1 ] · v
= [ s(∂µv)vs

−1 + (∂µs)s
−1 + qµvs

−1 ] · v
= [ s(∂µv)vs

−1 ] · v + [ (∂µs)s
−1 ] · v + qµ[ v ∧ s−1 ] · v

= [ s(∂µv)vs
−1 ] · v + [ (∂µs) ∧ s−1 ] · v − qµs

−1

= [ s(∂µv)vs
−1 ] · v − s−1v · (∂µs)− qµs

−1 . (138)

Finally, to the first term. (Note that for vectors a, b, ab = 2a · b− ba.)

[ s(∂µv)vs
−1 ] · v = [ s(∂µv)vs

−1 ] · v
= [ {2s · (∂µv)− (∂µv)s}vs−1 ] · v
= [ 2s · (∂µv)vs−1 ] · v − [ (∂µv)svs

−1 ] · v
= 2s · (∂µv) v ∧ s−1 · v + [ (∂µv)ss

−1v ] · v
= 2s · (∂µv)(−s−1) + [ (∂µv) ∧ v ] · v
= vs · (∂µs)s−1 + ∂µv − qµs

−1 . (139)
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where, owing to the fact that v2 = v · v = 1, v · (∂µv) = 0. So, plugging this last
result into (138), we get

∂µv = Ωµ · v = s−1(v · ∂µs) + ∂µv − qµs
−1 . (140)

On dropping the ∂µv term from both sides, we can solve for qµ, to get

qµ = v · ∂µs , (141)

which is Eq. (3.11). With q = γµqµ, we get (3.12):

q = γµv · ∂µs . (142)

But because v · s = 0, then
∂µ(v · s) = 0 , (143)

from which we get that
v · ∂µs = −s · ∂µv . (144)

Hence,
q = γµv · ∂µs = γµ∂̇µv · ṡ = □̇v · ṡ . (145)

Now, for another identity:

v · (□ ∧ s) = v ·□s− □̇v · ṡ , (146)

From this we get that

□̇v · ṡ = −v · (□ ∧ s) + v ·□s . (147)

Therefore, (145) becomes

q = γµv · ∂µs = −v · (□ ∧ s) + v ·□s , (148)

which is Eq. (3.12).

Next is Eq. (3.13):

Pµ = −ℏ
2
e2 · ∂µe1 =

ℏ
2
e1 · ∂µe2 . (149)

Let’s begin with the easy part. Since e2 · e1 = 0 then −e2 · ∂µe1 = e1 · ∂µe2.
Now, since e2 = ⟨Rγ2R̃ ⟩1, then

∂µe2 = ⟨ (∂µR)γ2R̃ ⟩1 + ⟨Rγ2∂µR̃ ⟩1 . (150)
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Then,

e1 · ∂µe2 = ⟨ e1(∂µR)γ2R̃ ⟩+ ⟨ e1Rγ2∂µR̃ ⟩

= ⟨ e1(∂µR)γ2R̃ ⟩+ ⟨ e1Rγ2∂µR̃ ⟩∼

= ⟨ e1(∂µR)γ2R̃ ⟩+ ⟨ (∂µR)γ2R̃e1 ⟩

= ⟨ e1(∂µR)γ2R̃ ⟩+ ⟨ e1(∂µR)γ2R̃ ⟩

= 2⟨ e1(∂µR)γ2R̃ ⟩

= 2⟨ (∂µR)γ2R̃e1 ⟩

= 2⟨ (∂µR)γ2R̃(Rγ1R̃) ⟩

= 2⟨ (∂µR)γ2γ1R̃ ⟩
= 2ℏ−1Pµ . (151)

On solving this for Pµ, we get (149).

What happens to Ωµ if we make a phase change on R according as

R −→ Re−γ2γ1Λ/ℏ . (152)

Ωµ −→ Ωµ + ∂µΛS
−1 . (153)

And from (120) we have Eq. (3.14):

Pµ −→ Pµ + ∂µΛ . (154)

The calculation is straightforward this time. [ Note: Ωµ = 2(∂µR)R̃ ]

Ω′
µ = 2(∂µRe

−γ2γ1Λ/ℏ)eγ2γ1Λ/ℏR̃

= 2[ (∂µR)e
−γ2γ1Λ/ℏ +R(−γ2γ1

ℏ
(∂µΛ)) ]e

γ2γ1Λ/ℏR̃

= 2(∂µR)R̃− 2R[
γ2γ1
ℏ

(∂µΛ) ]R̃

= 2(∂µR)R̃− 2(∂µΛ)R
γ2γ1
ℏ

R̃

= Ωµ + (∂µΛ)S
−1 . (155)

Now, we use (1) and (120) to get Eq. (3.15):

∂µψ = ∂µ[ ρ
1/2eiβR ]

= 1
2ρ

−1/2(∂µρ)e
iβR+ ρ1/2i(∂µβ)e

iβR+ ρ1/2eiβ∂µR

= 1
2 (∂µ ln ρ)ρ

1/2eiβR+ ρ1/2i(∂µβ)e
iβR+ ρ1/2eiβR(R̃∂µR)

= 1
2 (∂µ ln ρ)ψ + i(∂µβ)ψ + ψ(∂µR)R̃

= 1
2 (∂µ ln ρ)ψ + i(∂µβ)ψ + 1

2ψ2(∂µR)R̃

= 1
2 (∂µ ln ρ)ψ + i(∂µβ)ψ + 1

2ψΩµ

= 1
2 [ ∂µ(ln ρe

iβ) + Ωµ ]ψ . (156)
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Now we multiply through on the right by ℏiγ3ψ̃ to get Eq. (3.16):

ℏ(∂µψ)iγ3ψ̃ = 1
2 [ ∂µ(ln ρe

iβ) + Ωµ ]ψℏiγ3ψ̃
= 1

2 [ ∂µ(ln ρe
iβ) + Ωµ ]ρSv

= [Pµ + iqµ +Wµ ]ρv , (157)

where we used that 1
2ℏψiγ3ψ̃ = ρSv and

Wµ = (ρeiβ)−1∂µ(ρe
iβS) = ∂µS + S(∂µ ln ρ+ i∂µβ) . (158)

On extracting the vector part of (157), we get (3.18):

⟨ ℏ∂µψiγ3ψ̃ ⟩1 = ρ(vPµ − v ·Wµ) , (159)

from which we get that

ℏγν · ⟨ ∂µψiγ3ψ̃ ⟩1 = ρ
(
γν · vPµ − γν · (v ·Wµ)

)
= ρ

(
vνPµ + (v ∧ γν) ·Wµ

)
, (160)

which is (3.19), and this corrects a mistake that’s in both the preprint and the
published article.

On switching the indices on this last equation we have that

⟨ ℏγµ∂νψiγ3ψ̃ ⟩1 = ρ
(
vµPν + (v ∧ γµ) ·Wν

)
. (161)

Next, remembering that we introduced Tµν as

Tµν = ℏ⟨ γµ(∂νψ)iγ3ψ̃ ⟩ − eρvµAν . (162)

From these last two equation we get

Tµν = ρ
(
vµPν + (v ∧ γµ) ·Wν

)
− eρvµAν . (163)

Then, using Eq. (3.20):
Pµ = pµ + eAµ , (164)

and this equation and the one before it, we get

Tµν = ρ
(
vµ[ pµ + eAµ ] + (v ∧ γµ) ·Wν

)
− eρvµAν

= ρ
(
vµpµ + (v ∧ γµ) ·Wν

)
. (165)

along with
Tµ = ρvµp+Nµ , (166)

we get
Tµν = ρvµpν +Nµν , (167)

which is Eq. (3.21). So, on comparing (167) and (165) we have that

Nµν = ρ(v ∧ γµ) ·Wν . (168)
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Thus, using that (v ∧ γµ) · S = (v ∧ γµ) · (is ∧ v) ≡ 0:

Nµν = ρ(v ∧ γµ) ·Wν

= ρ(v ∧ γµ) · [ ∂νS + S(∂ν ln ρ+ i∂νβ) ]

= ρ(v ∧ γµ) · ∂νS + ρ(v ∧ γµ) · [S(∂ν ln ρ+ i∂νβ) ]

= ρ(v ∧ γµ) · ∂νS + ρ(v ∧ γµ) · (Si∂νβ)
= ρ(v ∧ γµ) · ∂νS − ρsµ∂νβ , (169)

which is Eq. (3.22). Let’s add some further calculations:

ρ(v ∧ γµ) · (Si∂νβ) = ρ(v ∧ γµ) · (vs∂νβ)
= ρ(∂νβ)(−γµ · s)
= −ρsµ∂νβ . (170)

4 Integrability Conditions

From (3.2) we have again

Ωµ = 2(∂µR)R̃ , (171)

which, by a little algebra, can be writtten in the form of Eq. (4.1):

∂µR = 1
2ΩµR . (172)

On differentiating this, we get (4.2):

∂ν∂µR = 1
2 (∂νΩµ + 1

2ΩµΩν)R . (173)

If we require the standard integrability condition on partial derivatives, then

∂ν∂µR = ∂µ∂νR , (174)

which is Eq. (4.3), then

∂νΩµ − ∂µΩν = 1
2 [ Ων ,Ωµ ] , (175)

which is Eq. (4.4).

To arrive at Eq. (4.5), we have a bit of work to do. So, let’s begin with (128)
[ Eq. (3.6) ]:

Pµ + iqµ + ∂µS = ΩµS , (176)

and take its partial by ν:

∂νPµ + i∂νqµ + ∂ν∂µS = (∂νΩµ)S +Ωµ∂νS . (177)

On switching the indices, we get

∂µPν + i∂µqν + ∂µ∂νS = (∂µΩν)S +Ων∂µS . (178)
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Subtracting (177) from (178), we get

∂µPν − ∂νPµ + i(∂µqν − ∂νqµ) = (∂µΩν − ∂νΩµ)S + (Ων∂µ − Ωµ∂ν)S . (179)

Using (4.3) we get

∂µPν − ∂νPµ + i(∂µqν − ∂νqµ) =
1
2 [ Ωµ ,Ων ]S + (Ων∂µ − Ωµ∂ν)S . (180)

Obviously, I need to do more work on it to get Eq. (4.5). The correct answer is
given as

∂µPν − ∂νPµ + i(∂µqν − ∂νqµ) =
1
2 [ ∂νS, ∂µS ]S−1 . (181)

The scalar part of this last equation is Eq. (4.6):

∂µPν − ∂νPµ = 1
2 [ ∂νS, ∂µS ] · S−1

= ⟨ ∂νS ∧ ∂µS · S−1 ⟩
= ⟨ ∂νS∂µSS−1 ⟩ . (182)

Now, we make a substitution: Pµ = pµ + eAµ:

∂µpν − ∂νpµ + e(∂µAν − ∂νAµ) = (∂νS∂µS) · S−1 , (183)

and this corrects a misprint in the preprint version of this equation. But

∂µAν − ∂νAµ = (γν ∧ γµ) · (□ ∧A) = Fµν . (184)

Therefore,
∂µpν − ∂νpµ + eFµν = (∂νS∂µS) · S−1 , (185)

which is Eq. (4.7). However, my version of (4.7) comes out to be

∂µpν − ∂νpµ + eFµν = (∂νS ∧ ∂µS) · S−1 . (186)

The reason these two equations are equivalent is because (∂νS · ∂µS) · S−1 ≡ 0,
because the inner product of any multivector with a scalar is zero.

5 Physical Content of the Dirac Equation

We want the Dirac equation expressed in local variables to ferret out its physical
content. By multiplying (55) on the right by ψ̃, we get Eq. (5.1)

ℏ(□ψ)iγ3γ0ψ̃ = mψγ0ψ̃ + eAψψ̃

= mρv + eAρeiβ . (187)

Using (156) and

Pµ + iqµ + ∂µS = ΩµS = ℏ∂µRγ2γ1R̃ , (188)
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we get Eq. (5.2):

ℏ(∂µψ)γ2γ1ψ̃ = [ ∂µ(ρe
iβ) + Ωµρe

iβ ]
ℏ
2
Rγ2γ1R̃

= ∂µ(ρe
iβ)S + (Pµ + iqµ + ∂µS)ρe

iβ

= (Pµ + iqµ)ρe
iβ + ∂µ(ρe

iβS) . (189)

But let’s do this in parts. First, we remember that ψ = ρ1/2e
1
2 iβR. Thus,

ℏ(∂µψ)γ2γ1ψ̃ = ℏ[ 1
2ρ

−1/2(∂µρ)e
1
2 iβR+ 1

2ρ
1/2(i∂µβ)e

1
2 iβR

+ ρ1/2e
1
2 iβ(∂µR) ] ρ

1/2e
1
2 iβγ2γ1R̃

=
ℏ
2
[ (∂µρ)e

iβ + ρeiβ(∂µβ) + ρeiβ 2(∂µR)R̃ ]Rγ2γ1R̃

= [ ∂µ(ρe
iβ) + Ωµρe

iβ ]
ℏ
2
Rγ2γ1R̃ . (190)

Next,

[ ∂µ(ρe
iβ) + Ωµρe

iβ ]
ℏ
2
Rγ2γ1R̃ = [ ∂µ(ρe

iβ) + Ωµρe
iβ ]S

= ∂µ(ρe
iβ)S +ΩµSρe

iβ

= ∂µ(ρe
iβ)S + (Pµ + iqµ + ∂µS)ρe

iβ

= (Pµ + iqµ)ρe
iβ + ∂µ(ρe

iβS) , (191)

where we used (176) and then recollected terms. Multiply through (190) on the
left by γµ, we get

ℏ(□ψ)γ2γ1ψ̃ = (P + qi)ρeiβ +□(ρeiβS) , (192)

which is Eq. (5.3). Putting (187) and (192) together we have that

ρe−iβ(p− iq) = ρmv −□(ρeiβS) , (193)

which is Eq. (5.4). Multiply this through by i on the right to get:

ρe−iβ(−ip− q) = ρmvi−□(ρeiβ iS) , (194)

which simplifies to

ρe−iβ(ip+ q) = ρmiv +□(ρeiβiS) . (195)

So, why did we multiply (193) by the unit pseudoscalar? We did because we
want the pseudovector part of (193), and we can get at that by taking the vector
part of (195), which gives us

ρ(p sinβ + q cosβ) = □ · (ρeiβiS) , (196)

22



which is Eq. (5.5). The vector part of (193) gives

ρ(p cosβ − q sinβ) = ρmv +□ · (ρeiβS) , (197)

which is Eq. (5.6).

Moving on to Eq. (5.7). Let’s return to (193) and distribute the derivative
operator.

ρe−iβ(p− iq) = ρmv − γµ∂µ(ρe
iβS)

= ρmv − γµ[ (∂µρ)e
iβS) + ρ(∂µe

iβ)S + ρeiβ∂µS ]

= ρmv − (□ρ)eiβS − ρ(□eiβ)S − ρe−iβ□S

= ρmv − e−iβ(□ρ)S − ρe−iβ(□iβ)S − ρe−iβ□S

= ρmv − e−iβ(□ρ)S + ρie−iβ(□β)S − ρe−iβ□S . (198)

Therefore,

ρ(p− iq) = ρmeiβv − (□ρ)S + ρi(□β)S − ρ□S

= ρmeiβv −□(ρS) + i(□β)ρS , (199)

which is Eq. (5.7). The vector part of this last equation gives us (5.8):

ρp = ρmv cosβ −□ · (ρS) + ρ(iS) · (□β) . (200)

Note: The equation embedded in the text at the bottom of page 16 of the
preprint contains an error. It should read

(iS) ·□β = (v ∧ s) ·□β = vs ·□β − sv ·□β . (201)

Now, the trivector part of (199) can be determined by taking the vector part
of its dual. But before I take its dual, I want to put it into a more convenient
form, such as:

ρ(p− iq) = ρmeiβv + i□(ρsv) + i(□β)ρS . (202)

On taking the dual of this last equation gives us

ρ(ip+ q) = ρmieiβv −□(ρsv)− (□β)ρS , (203)

and taking the vector part of this gives us

−ρq = ρmv sinβ +□ · (ρsv) + (□β) · (ρS) , (204)

23



which is Eq. (5.9).
The paper claims that by use of (64) and (145), this last equation can be

transformed into

S ·□β = s · (□ ∧ v)− v ·□s = s ·□v − v · (□ ∧ s) . (205)

which is Eq. (5.10).

I will begin by using (64) to replace the sinβ term in (204) and use (145) to
replace the q in the same equation:

−ρ[−v · (□ ∧ s) + v ·□s ] = −v□ · (ρs) +□ · (ρsv) + (□β) · (ρS) . (206)

Now, for the first simplification.

v · (□ ∧ s)− v ·□s = ρ−1 [−v□ · (ρs) +□ · (ρsv) ] + S ·□β . (207)

Obviously, we have to get rid of ρ. So, let’s expand the divergences.

□ · (ρs) = γµ∂µ · (ρs)
= (∂µρ)γ

µ · s+ ργµ∂µ · s
= s ·□ρ+ ρ□ · s . (208)

And,

□ · (ρsv) = γµ∂µ · (ρs ∧ v)
= ∂µρ γ

µ · (s ∧ v)
= (∂µρ)γ

µ · (s ∧ v) + ρ∂µγ
µ · (s ∧ v)

= (∂µρ)(s
µv − vµs) + ρ∂µ(s

µv − vµs)

= vs ·□ρ− sv ·□ρ+ ρ(v□ · s− s□ · v) . (209)

On taking the square-bracket expression of (207), we have that

−v□ · (ρs) +□ · (ρsv) = −v{s ·□ρ+ ρ□ · s}
+ {vs ·□ρ− sv ·□ρ+ ρv□ · s− ρs□ · v}

= −vs ·□ρ− ρv□ · s
+ {vs ·□ρ− sv ·□ρ+ ρv□ · s− ρs□ · v}

= −sv ·□ρ− ρs□ · v
= −s[ v ·□ρ+ ρ□ · v ]
= −s□ · (ρv) = 0 . (210)

Anyway, substituting this back into (207), yields

v ·□s = ṡ = v · (□ ∧ s) + S ·□β .
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But we also need the following result:

S ·□β = ⟨S□β ⟩1
= ⟨ isv□β ⟩1
= −⟨ siv□β ⟩1
= −s · ⟨ iv□β ⟩2
= −s · (iv ∧□β) . (211)

Now, Eq. (5.11) of the preprint should be written as

v ·□s = ṡ = s · (□ ∧ v) + s · (iv ∧□β) . (212)

Proving this last equation from (205) is not too hard. We substitute out S ·□β
by use of the following identity:

v ·□s ≡ (is ∧ v) ·□β = −s · (iv ∧□β) . (213)

Now, we try to derive Eq. (5.12). We start with Eq. (5.8) and dot it with v:

p · v = m cosβ − ρ−1v · [□ · (ρS) ] + v · [ (iS) ·□β ]
= m cosβ − ρ−1v · [□ · (ρisv) ] + v · [□β · (iS) ]
= m cosβ − ρ−1v ∧□ · (ρS)− (v ∧□β) · (iS) . (214)

But,

ρ−1v · [□ · (ρS) ] = ρ−1v · [□ · (ρS) ]
= ρ−1v · (□ρ) · S + ρ□ · S
= ρ−1(v ∧□ρ) · S + v ·□ · S
= ρ−1(v ∧□ρ) · S + v ∧□ · S . (215)

And,

(v ∧□β) · (iS) = ⟨ (v ∧□β)(iS) ⟩
= ⟨Si(v ∧□β) ⟩
= S · (iv ∧□β) . (216)

Hence, we get

p · v = m cosβ − ρ−1v ∧□ · (ρS)− (v ∧□β) · (iS)
= m cosβ − ρ−1(v ∧□ρ) · S +□ ∧ v · S + S · (iv ∧□β)

= m cosβ − ρ−1(v ∧□ρ) · S + S · (□ ∧ v + iv ∧□β)

= m cosβ − ρ−1(v ∧□ρ) · S + S · (□ ∧ v + iv ∧□β) . (217)
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Now, we try to derive Eq. (5.13). We start with Eq. (5.8) in the following
form:

p = mv cosβ − ρ−1□ · (ρS) + (iS) · (□β)
= mv cosβ − ρ−1[ (□ρ) · S + ρ□ · S ] + (v ∧ s) · (□β)
= mv cosβ − ρ−1(□ρ) · S −□ · S + (v ∧ s) · (□β) . (218)

Rememebring that v · s = 0, we dot this last equation by s−1,

p · s−1 = −s−1 ·□ · S + s−1 · (v ∧ s) · (□β)
= −s−1 ·□ · S + (v ∧ s) · (□β ∧ s−1)

= −s−1 ·□ · S + (v ∧ s) · (□β ∧ s−1)

= −s−1 ·□ · S − v ·□β . (219)

Therefore
β̇ = v ·□β = −p · s−1 − s−1 ·□ · S , (220)

which is near to Eq. (5.13).

6 Proper Flows

Here, we are interested in the flow of local variables along a streamline. We
begin with the proper angular velocity Ω along streamlines.

Ω = 2ṘR̃ = 2(v ·□R)R̃ = vµΩµ . (221)

First, an identity,
Ω = 2ṘR̃ = {(□R)R̃, v} −□v , (222)

which is Eq. (6.2). To establish this, we will need our old friend

ba = 2a · b− ab . (223)

for vectors a, b. Then

□vR = γµ∂µvR

= γµ(∂µv)R+ γµv∂µR

= (□v)R+ γµv∂µR

= (□v)R+ (2γµ · v∂µ − vγµ∂µ)R

= (□v)R+ 2v ·□R− v□R . (224)

And one more identity:

(□R)R̃vR = □Rγ0 = □(vR) . (225)

Hence,
(□R)R̃vR = (□v)R+ 2v ·□R− v□R . (226)
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(□R)R̃v = □v + 2(v ·□R)R̃− (v□R)R̃

= □v + 2ṘR̃− (v□R)R̃ , (227)

which gives us

2ṘR̃ = (□R)R̃v + v(□R)R̃−□v

= {(□R)R̃, v} −□v . (228)

But to make progress, we need more than vector identities. So, we write the
Dirac equation (2.15) in the form as

ℏ□ψiγ3γ0ψ̃ = mψγ0ψ̃ + eAψψ̃

= mρv + eAρeiβ . (229)

But we can also write the Dirac Equation as

ℏ□ψiγ3γ0ψ̃ = 2(□ψ)ψ̃S = mρv + eAρeiβ . (230)

And still more identities to deal with:

2(□ψ)ψ̃ = 2(□ρ1/2eiβR)ρ1/2e
1
2 iβR̃

= [□ ln ρ+ (□β)i+ (□R)R̃ ]ρeiβ , (231)

which is Eq. (6.4). From this we get,

(mρv + eAρeiβ)S−1 = [□ ln ρ− i□β + 2(□R)R̃ ]ρeiβ , (232)

which simplifies to

(mve−iβ + eA)S−1 = □ ln ρ− i□β + 2(□R)R̃ . (233)

Thus, we get that

2(□R)R̃ = (mve−iβ + eA)S−1 −□ ln ρ+ i□β , (234)

which compares to Eq. (6.5) of the preprint.

Now, for our next trick, we need to understand that for trivector B and for
vector v

B · v = 1
2 (Bv + vB) = 1

2{B, v} , (235)

Therefore, for (6.6),

1
2{2(□R)R̃, v} = [ 2(□R)R̃ ] · v

= [ (mve−iβ + eA)S−1 −□ ln ρ+ i□β ] · v
= −v ·□ ln ρ+ v · (i□β) + v · [ (mve−iβ + eA)S−1 ]

= −v ·□ ln ρ+ v · (i□β) + v · (mve−iβ + eA)S−1 , (236)
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since v · S−1 = 0.
But how did we move the v on the right side to the left side? Sample

calculation:

(i□β) · v = ⟨ (i□β)v ⟩2
= −⟨ (i□β)v ⟩∼2
= −⟨ v(□β)i ⟩2
= ⟨ vi(□β) ⟩2
= v · (i□β) . (237)

So, using (236) into (222), yields Eq. (6.7):

Ω = −□ ∧ v + v · (i□β) + v · (mv cosβ + eA)S−1 . (238)

Hint: After substitution, keep only the bivector parts, as Ω is a bivector.
And from this, we get Eqs. (6.8)–(6.10):

v̇ = Ω · v = v · (□ ∧ v) , (239a)

ṡ = Ω · s = s · (□ ∧ v) + s · [ v · (□βi) ] (239b)

Ṡ = 1
2 [ Ω, S ] = 1

2 [S,□ ∧ v ] + 1
2 [S, v · (□βi) ] , (239c)

Equation (182) can be re-expressed as

□ ∧ P = 0 , (240)

which is Eq. (6.11). Hence, P must be the gradient of some function, say χ:

P = □χ , (241)

where χ is the phase of the Dirac wave function. Going over to the classical
limit, β = 0, sinβ = 0, and cosβ = ±1. Then, (199) becomes by taking the
vector part:

p = ±mv , (242)

where we have set □β = 0, and set

⟨□(ρS) ⟩1 = □ · (ρS) = 0 . (243)

Now, from (164) we can write

P = p+ eA , (244)

and then
p = □χ− eA . (245)

Therefore (242) becomes

p = ±mv = □χ− eA , (246)
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which is (6.13), where the +,− signs refer to different charges. Squaring this
gives the Hamilton-Jacobi equation (6.14):

(□χ− eA)2 = m2 , (247)

since v2 = 1. Anyway, χ can be solved for if A is known.
On taking the curl of (246), we have that

±m□ ∧ v = □ ∧□χ− e□ ∧A = −e□ ∧A , (248)

since □ ∧□ = 0 as an identity. Continuing, we also know that □ ∧ A = F , the
electromagnetic tensor. Thus, the proper angular velocity is

Ω = −□ ∧ v = ± e

m
F , (249)

which is Eq. (6.16) and which obtains the Lorentz force. Or, more generally,

Ṙ = ± e

2m
FR , (250)

which is Eq. (6.17).
Now for the dervation. From (222) we get

Ṙ = 1
2ΩR . (251)

Now we just substitute in from (249).

We next take (5.7):

ρ(p− iq) = ρmveiβ −□(ρS) + i(□β)ρS , (252)

and put it in the form (6.18):

(P + iq)− eA = mve−iβ − γνWν , (253)

and Wν is given by (158).

So, we begin with (252) and use that p = P − eA, to get

ρ[ (P + qi)− eA ] = ρmveiβ −□ (ρS) + i(□β)ρS . (254)

Then, divide through by ρ:

(P + qi)− eA = mveiβ − ρ−1□ (ρS) + i(□β)S . (255)

But

□(ρS) = γν∂ν(ρS)

= γν [ (∂νρ)S) + ρ∂νS ]

= (□ρ)S + ρ□S . (256)
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Hence,

ρ−1□(ρS) = ρ−1(□ρ)S +□S

= (□ ln ρ)S +□S . (257)

So, (255) becomes

(P + qi)− eA = mveiβ − (□ ln ρ)S −□S + i(□β)S . (258)

Now,

γνWν = γν [ ∂νS + S(∂ν ln ρ+ i∂νβ) ]

= −□S − γνS(∂ν ln ρ+ i∂νβ)

= −□S − γν(∂ν ln ρ+ i∂νβ)S

= −□S − (□ ln ρ)S + i□βS . (259)

Finally,
(P + qi)− eA = mveiβ − γνWν . (260)

First, we take the gradient of this last equation, to get

(□P +□qi)− e□A = m[□v − i(□β)v ]e−iβ + γµγν∂µWν , (261)

which is (6.19). Then, on taking the bivector part, we get

m[□ ∧ v − i(□β) ∧ v ]e−iβ = −eF + ∂µW
µ + 1

2 [ γ
µ ∧ γν , ∂µWν ]

+ (□ ∧ P +□ ∧ q i) , (262)

which is (6.20).
As a partial calculation, let’s find the bivector part of γµγν∂µWν . For

starters,
γµγν∂µWν = γµ · γν∂µWν + γµ ∧ γν∂µWν . (263)

Then

⟨ γµγν∂µWν ⟩2 = ηµν∂µWν + ⟨ γµ ∧ γν∂µWν ⟩2
= ∂µW

µ + 1
2 [ γ

µ ∧ γν , ∂µWν ] . (264)

Let’s recast (181) into the form of (6.21):

□ ∧ P +□ ∧ q i = 1
4γ

µγν [ ∂νS, ∂µS ]S−1 , (265)

from whence we from (262) that

m[□ ∧ v − i(□β) ∧ v ]e−iβ = −eF + ∂µW
µ + 1

2 [ γ
µ ∧ γν , ∂µWν ]

+ 1
4γ

µγν [ ∂νS, ∂µS ]S−1 , (266)

30



And some more massaging:

□ ∧ v − i(□β) ∧ v = −eF
m
eiβ +m−1{∂µWµ + 1

2 [ γ
µ ∧ γν , ∂µWν ]

+ 1
4γ

µγν [ ∂νS, ∂µS ]S−1}eiβ

= −eF
m
eiβ +m−1eiβ{∂µWµ + 1

2 [ γ
µ ∧ γν , ∂µWν ]

+ 1
4γ

µγν [ ∂νS, ∂µS ]S−1} . (267)

get that

∂µWν − ∂νWµ + 1
2 [ ∂νS, ∂µS ]S−1 = 1

2 [Wµ,Wν ]S
−1 , (268)

which is (6.22). (Note: On the RHS of (265), I get a factor of a half rather than
of a fourth.)

Let’s try this.

∂µWν − ∂νWµ = (∂µS)(Wν − ∂νS)S
−1 − (∂νS)(Wµ − ∂µS)S

−1 . (269)

Hence,

∂µWν − ∂νWµ − [ (∂µS)Wν − (∂νS)Wµ ]S
−1 = −[ (∂µS)(∂νS)− (∂νS)(∂µS) ]S

−1

= [ ∂νS, ∂µS ]S−1 . (270)

This can be easily rewritten as (268).

Combining these last results (262) finally becomes

□ ∧ v + iv ∧□β = − e

m
Feiβ + C , (271)

where
mC = eiβ

(
∂µW

µ + 1
4 [ γ

µγν , [Wµ,Wν ]S
−1 ]

)
. (272)

Now for a short lemma.

iv ∧□β = ⟨ iv ∧□β ⟩2
= ⟨ iv□β ⟩2
= −⟨ vi□β ⟩2
= −v · (i□β) . (273)

Next, we shoot for (6.25). Substituting (271) into (238), we get

Ω = −□ ∧ v + v · (i□β) + v · (mv cosβ + eA)S−1

= [ iv ∧□β +
e

m
Feiβ − C ] + v · (i□β) + v · (mv cosβ + eA)S−1

=
e

m
Feiβ − C + v · (mv cosβ + eA)S−1 , (274)

31



which is Eq. (6.25).
Eq. (6.26) follows immediately from v̇ = Ω · v:

v̇ =
e

m
(Feiβ) · v + v · C . (275)

With a little more effort, we get Eq. (6.27):

Ṡ = 1
2

[
F,

e

m
Seiβ

]
+ 1

2 [S,C ] . (276)

To prove this, we begin with 2Ṡ = [Ω, S ].

[ Ω, S ] = [
e

m
Feiβ − C + v · (mv cosβ + eA)S−1, S ]

=
e

m
FSeiβ − CS + v · (mv cosβ + eA)

− { e
m
SFeiβ − SC + v · (mv cosβ + eA)}

=
e

m
eiβ [F, S ]− [C, S ]

= [F,
e

m
Seiβ ] + [S,C ] , (277)

Hence,

Ṡ = 1
2

[
F,

e

m
Seiβ

]
+ 1

2 [S,C ] . (278)

We now introduce the local magnetic moment suggests that

µ =
| e |
m
Seiβ . (279)

and

|µ | = | e |
m

|S | = | e |ℏ
2m

. (280)

From (274) and (128) we get

v · (p+ eA) + iv · q + Ṡ = ΩS =
e

m
FeiβS − CS +m cosβ + ev ·A . (281)

After cancelling the ev ·A term from both sides, we get

v · p+ iv · q + Ṡ = ΩS =
e

m
FeiβS − CS +m cosβ . (282)

The pseudoscalar part of (282) gives

iv · q = e

m
⟨FeiβS ⟩4 − C ∧ S . (283)
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Hence, we get (6.31)

v · q = (−i)
[ e
m
⟨FeiβS ⟩4 − C ∧ S

]
= i

[
C ∧ S − e

m

(
Feiβ

)
∧ S

]
=

e

m
(Feiβ) · (s ∧ v) + C · (v ∧ s) , (284)

where we used that S = isv = is ∧ v. From the scalar part of (282) is (6.32)

p · v = m cos β +
( e
m
Seiβ

)
· F − C · S . (285)

p · v =
e

m
⟨FeiβS ⟩ − C · S +m cos β

=
e

m
⟨SeiβF ⟩ − C · S +m cos β

= ⟨ e
m
eiβS ⟩2 · F − C · S +m cos β

=
( e
m
eiβS

)
· F − C · S +m cos β . (286)

Things to know to produce Eq. (6.33): Start with (168),

Nµν = Nµ · γν = ρ(v ∧ γµ) ·Wν

= ρ(v ∧ γµ) · ∂νS − ρsµ∂νβ . (3.22)

□ · (ρs) = −mρ sinβ . (2.18)

□ · (ρs) = s ·□ρ+ ρ□ · s . (287)

□ ∧ v + iv ∧□β = − e

m
Feiβ + C . (6.23)

It will a bit of effort to prove Eq. (3.22). We’ll start with (158):

Wµ = (ρeiβ)−1∂ν(ρe
iβS) . (288)

So,

ρ(v ∧ γµ) ·Wν = ρ(v ∧ γµ) · [ (ρeiβ)−1∂µ(ρe
iβS) ]

= ρ(v ∧ γµ) · [ (ρeiβ)−1{(∂ν ρ)eiβS) + ρ∂ν(e
iβ)S}+ ∂νS ]

= ρ(v ∧ γµ) · ∂νS + ρ(v ∧ γµ) · [ (ρeiβ)−1{(∂ν ρ)eiβS) + ρ∂ν(e
iβ)S} ]

= ρ(v ∧ γµ) · ∂νS + ρ(v ∧ γµ) · [ ρ−1(∂ν ρ)S + (∂νβ)iS ]

= ρ(v ∧ γµ) · ∂νS + ρ(v ∧ γµ) · [ ρ−1(∂ν ρ)S − (∂νβ)sv ]

= ρ(v ∧ γµ) · ∂νS − ρ(v ∧ γµ) · [ (∂νβ)s ∧ v ] , (289)
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where we used that (v ∧ γµ) · ρ−1(∂ν ρ)S = 0 because v · S = 0. Continuing, we
have that

ρ(v ∧ γµ) ·Wν = ρ(v ∧ γµ) · ∂νS − ρsµ∂νβ . (290)

Next, we have one of the harder equations to establish, Eq. (6.33):

∂µNµν = ρS · (□ ∧ ∂νv)− (∂νv ∧□) · (ρS)− ρs ·□ ∂νβ − (∂νβ)□ · ρs

= −ρS · ∂ν
( e
m
Feiβ − C

)
+ ρ(∂νv ∧□β) · (iS)

− (∂νv ∧□) · (ρS)−m∂ν cos β

= −ρ
(
S · ∂ν

e

m
(Feiβ − C) + (∂νv ∧ γµ) ·Wµ +m∂ν cos β

)
. (291)

Proof following.

Lemma: v ∧ γµ · S = 0. This uses the fact that v · S = 0.

Definition: Given a differentiable operator D and differentiable functions F
and G, then we are said to “contraflux” the derivatives of F and G, if we replace
the expression (DF )G by D(FG)− F (DG).

Let’s see how far we can get on this one. To begin with, we have that

∂µNµν = ∂µ[ ρ(v ∧ γµ) · ∂νS − ρsµ∂νβ ] . (292)

Let’s differentiate the terms separately. Careful observation of the first two
terms on the RHS of the first line of (291) show that we need to bring the
ρ and the S together. Sounds like a plan! It looks like we should begin by
contrafluxing the derivative ∂ν over the dot product of the two bivectors. Thus,

∂µ[ ρ(v ∧ γµ) · ∂νS ] = ∂µ[ ρ∂ν{(v ∧ γµ) · S} − ρ{∂ν(v ∧ γµ)} · S ]

= −∂µ[ {∂ν(v ∧ γµ)} · (ρS) ]
= −{∂ν((∂µv) ∧ γµ)} · (ρS) − {∂ν(v ∧ γµ∂µ)} · (ρS)
= −(ρS) · {∂ν((∂µv) ∧ γµ)} − {∂ν(v ∧□)} · (ρS)
= (ρS) · {∂ν(□ ∧ v)} − (∂νv ∧□) · (ρS)
= ρS · (□ ∧ ∂νv)− (∂νv ∧□) · (ρS) . (293)

And that gives us the first two terms of the first line of (291). Then,

∂µ[−ρsµ∂νβ ] = −(∂µρ)sµ∂νβ − ρ∂µ[ sµ∂νβ ]

= −(s ·□ρ)∂νβ − ρ[ (□ · s)∂νβ + s ·□∂νβ ]
= −(∂νβ)[ (s ·□ ρ) + ρ(□ · s) ]− ρs ·□∂νβ
= −(∂νβ)□ · (ρs)− ρs ·□∂νβ . (294)
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And that gives us the third and fourth terms of the first line of (291).
Now that we have

∂µNµν = ρS · (□ ∧ ∂νv)− (∂νv ∧□) · (ρS)− ρs ·□ ∂νβ − (∂νβ)□ · ρs , (295)

can we get the next line of (291)? That is, (6.33)

∂µNµν = ρS · (□ ∧ ∂νv)− (∂νv ∧□) · (ρS)− ρs ·□ ∂νβ − (∂νβ)□ · ρs

= −ρS · ∂ν
( e
m
Feiβ − C

)
+ ρ(∂νv ∧□β) · (iS)

− (∂νv ∧□) · (ρS)−m∂ν cos β . (296)

Let’s begin with the first term and use (271) in the form

□ ∧ v = − e

m
Feiβ + C − iv ∧□β , (297)

So,

ρS · (□ ∧ ∂νv) = ρS · ∂ν(□ ∧ v)

= ρS · ∂ν
(
− e

m
Feiβ + C − iv ∧□β

)
= ρS · ∂ν

(
− e

m
Feiβ + C

)
− ρS · ∂ν (iv ∧□β)

= −ρS · ∂ν
( e
m
Feiβ − C

)
− ρ(∂νv ∧□β) · (iS) . (298)

However, the text show a plus sign in front of the second term. Anyway, we’ve
one more step:

S · ∂ν (iv ∧□β) = ⟨S∂ν (iv ∧□β) ⟩
= ⟨ (iS)∂ν (v ∧□β) ⟩
= ⟨ (∂νv ∧□β) (iS) ⟩
= (∂νv ∧□β) · (iS) . (299)

The last thing I have to show is that

−ρs ·□ ∂νβ − (∂νβ)□ · ρs = −m∂ν cos β . (300)

Using (64), I can show that

−(∂νβ)□ · ρs = (∂νβ)mρ sinβ

= −mρ∂ν cos β . (301)

Finish this!!
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I repeat Eq. (2.26)

∂µT
µ = ∂µ(ρv

µp) + ∂µN
µ

= ∂µ(ρv
µ)p+ ρvµ∂µp+ ∂µN

µ

= ρv ·□ p+ ∂µN
µ

= ρṗ+ ∂µN
µ

= ρeF · v = ρf . (302)

Now we go to Eq. (6.34). We begin with Eq. (2.26):

∂µT
µ = ρṗ+ ∂µN

µ = ρeF · v = ρf , (303)

from which we get that
ṗ = eF · v − ρ−1∂µN

µ . (304)

To proceed, I make that assumption that

∂µN
µ = ∂µNµ = ∂µγνNµν = γν∂µNµν . (305)

Now we go to Eq. (6.35).

∂µM
µ = ρ 1

2 [S,□ ∧ v ] + 1
2 [ v ∧□, ρS ]

= ρ 1
2

[
F,

e

m
Seiβ

]
+ ρ 1

2 [S,C ] + 1
2 [ v ∧ γ

µ,Wµ ] . (6.35)

We begin with Eq. (2.34)

ρṠ + ρ p ∧ v = γµ ∧Nµ − ∂µM
µ , (2.34)

and apply (271):

□ ∧ v + iv ∧□β = − e

m
Feiβ + C . (306)

From (2.10)
Tµ = ρvµp+Nµ , (307)

we get
Tµ = ρ vµp+Nµ , (308)

Then,
γµ ∧ Tµ = ρ v ∧ p+ γµ ∧Nµ . (309)

Eq. (2.20) is

γµ ∧ Tµ = Tµ ∧ γµ = i(□ ∧ ρs) = −□ · (iρs) . (310)
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Then, using (2.34) from a half-dozen equations ago:

∂µM
µ = −ρṠ + γµ ∧Nµ + ρv ∧ p
= −ρṠ + γµ ∧ Tµ

= □ · (iρs)− ρṠ

= □ · (iρs) + 1
2ρ[□ ∧ v, S ] + 1

2 [ v · (□βi), ρS ] , (311)

where we used (239c). Now,

[ v ∧□, ρS ] = v ∧□(ρS)− ˙
(ρS)v ∧ □̇

v□(ρS) = v ·□(ρS) + v ∧□(ρS)

= (v ·□ρ)S + ρṠ + v ∧□(ρS) . (312)

⟨ v□(ρS) ⟩2 = v ∧ (□ · (ρS)) . (313)

(∂νv ∧□) · (ρS) = [ (∂νv) ∧□ ] · (ρS)
= ⟨ (∂νv) ∧□ρS ⟩
= ⟨ (∂νv)□ρS ⟩
= ⟨ (∂νv)□(ρS) ⟩
= ⟨ (∂νv)[ (□ρ)S + ρ□S ] ⟩
= [ (∂νv) ∧□ρ) ] · S + ρ[ (∂νv) ∧ □̇ ] · Ṡ . (314)

Now, we finally return to (305): [This equation will be needed soon.]

∂µNµ = γµ
[
S · ∂µ(

e

m
F eiβ − C) + (∂νv ∧ γµ) ·Wµ +m∂µ cos β

]
= γµ

[
∂µS(

e

m
Feiβ − C) · /S + γµ(∂µv ∧ γν) ·Wν +mγµ∂µ cos β

]
.

(315)

∂µNµ

−ρ
= □(

e

m
Feiβ − C) · /S +□v ∧ γν · /Wν +m□ cos β . (316)

So, now we’re ready for (6.34):

ṗ = eF · v − ρ−1∂µNµ

= eF · v + e

m
□(Feiβ) · /S −□C · /S +□v ∧ γν · /Wν +m□ cos β . (317)

According to the text, we substitute this last result into (2.34)

ρṠ + ρ p ∧ v = γµ ∧Nµ − ∂µM
µ , (2.34)

and use (6.27) to get Eq. (6.36):

ρv ∧ p+ γµ ∧Nµ = γµ ∧ Tµ = 1
2 [ v ∧ γ

µ,Wµ ] . (6.36)
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7 Weyssenhoff Motion

There’s not much for me to do in this short section, except to derive Eq. (7.5)

p = v(p · v + Ṡ) = (p · v)v + v · Ṡ . (7.5)

from Eq. (7.4).
Ṡ = v ∧ p . (7.4)

Okay,

v · v ∧ p = v · Ṡ
p = v v · p+ v · Ṡ
= (p · v)v + v · Ṡ
= v(p · v + Ṡ) . (318)

since v ∧ Ṡ = 0.

8 Interpretation of the Dirac Theory

No math in this section.
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9 Appendix A: Matrix form of the Dirac
Theory

We start off with γ0 as a hermitian matrix and γi(i = 1, 2, 3) anti-hermitian
matrices. We will see both i and γ5 used to represent γ0γ1γ2γ3. However, in
what follows, I will use i =

√
−1 to be the complex unit imaginary.

We need to find a “spinor” u that satisfies both

γ0u = u and γ2γ1u = iu , (319)

where u is a 4× 1 matrix. We have suitable matrix solutions for these equation
in the assignments

u =


1
0
0
0

 , γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ2γ1 =


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 . (320)

The other Dirac matrices are shown on the next page.
Given a GA version of the ψ as

ψ = ρ1/2e
1
2 iβR , (321)

(where R and thus ψ are even multivectors), we can arrive at the proper matrix
version by the association

Ψ = ψu , (322)

which is Eq. (A3).
In the geometric algebra, we can write the Dirac Equation for an electron in

an EM field as
ℏ□ψγ2γ1 − eAψ = mψγ0 , (323)

which is Eq. (A4), and which corrects an error in the preprint version. Imagining
this last equation as a matrix form and multiplying through on the right by u,
we get

ℏ□ψγ2γ1u− eAψu = mψγ0u . (324)

Using the equations in (319) for this:

ℏi□ψu− eAψu = mψu . (325)

And finally,
ℏi□Ψ− eAΨ = mΨ . (326)

Or, alternatively,
(ℏi□− eA)Ψ = mΨ . (327)

In coordinates, this becomes

γµ(ℏi∂µ − eAµ)Ψ = mΨ . (328)
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These last two equations constitute Eq. (A5) in the preprint.
The following is how to take the hermitian conjugate of an arbitrary gamma

matrix γµ:
γ†µ = γ0γµγ0 , (329)

which is Eq. (A6). More generally, let M be any multivector with real coeffi-
cients, then Eq. (A7) is

M† = γ0M̃γ0 , (330)

where the tilde mean to take the reversion operator.
To obtain Eq. (A8), we need to know that i → γ5, γ̃5 = γ5 and that ρ̃1/2 =

ρ1/2. Hence, from (321), we get

ψ̃ = ρ1/2e
1
2 iβR̃ , (331)

since γ5 commutes with all even multivectors. Thus,

ψ† = γ0ψ̃γ0 = γ0ρ
1/2e

1
2 iβR̃γ0 = ρ1/2e−

1
2 iβγ0R̃γ0 = ρ1/2e−

1
2 iβR† , (332)

which is Eq. (A9).

Before continuing, let’s demonstrate the Dirac matrices with lower indices:

γ1 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , γ2 =


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 , γ3 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 .

(333)
And, of course, there’s also γ5 (in the matrix algebra):

γ5 ≡ −iγ0γ1γ2γ3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (334)

And now, for combinations:

1
2 (1 + γ0) =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , 1
2 (1− iγ2γ1) =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 . (335)

Hence,

1
4 (1 + γ0)(1− iγ2γ1) =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

(336)
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It seems like we have gone to a whole lot of trouble to get a matrix with a single
nozero entry in it. But, as we shall see, this is a special matrix indeed, for

uu† =


1
0
0
0

(
1 0 0 0

)
=


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (337)

Thus

uu† = 1
4 (1 + γ0)(1− iγ2γ1)

= 1
4 (1 + γ0 − iγ2γ1 − iγ0γ2γ1) , (338)

which is Eq. (A10), and a little more.
With Ψ† = u†ψ†, then we can get started on Eq. (A11).

ΨΨ†γ0 = ψuu†ψ†γ0 = ψuu†γ20ψ
†γ0 (since γ20 = 1)

= ψuu†γ0(γ0ψ
†γ0) = ψu(u†γ0)ψ̃

= ψu(γ0u)
†ψ̃

= ψuu†ψ̃ .

At this point, we make a substitution using (338) and that γ0γ2γ1 = γ5γ3 to
continue Eq. (A11):

ΨΨ†γ0 = ψuu†ψ̃

= 1
4ψ[ 1 + γ0 − iγ2γ1 + iγ0γ2γ1 ]ψ̃

= 1
4 [ψψ̃ + ψγ0ψ̃ − iψγ2γ1ψ̃ − iψγ5γ3ψ̃ ]

= 1
4ρ[ e

βγ5 + v − ieβγ5 ŝ+ iγ5ŝ ] , (339)

where
ψψ̃ = ρeβγ5 , (340)

and
ψγ0ψ̃ = ρv , (341)

and

ψγ2γ1ψ̃ = ρeiβRiγ2γ1R̃ = ρeiβ
2

ℏ
Ŝ , (342)

and
iψγ5γ3ψ̃ = iγ5ψγ3ψ̃ = iγ5ŝ . (343)

For an arbitrary matrix M

Ψ†γ0MΨ = Tr (Ψγ0MΨ†) = Tr (MΨΨ†γ0)

= 1
4{M [ψψ̃ + ψγ0ψ̃ − iψγ2γ1ψ̃ − iψγ5γ3ψ̃ ]}

= ⟨Mψψ̃ ⟩+ ⟨Mψγ0ψ̃ ⟩ − i⟨Mψγ2γ1ψ̃ ⟩ − i⟨Mψγ0γ2γ1ψ̃ ⟩ ] , (344)
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which is Eq. (A12). From the text: “The trace of a matrix in the Dirac matrix
algebra is equal to four times the scalar part of the corresponding multivector
in the space-time algebra. . .”

Let A,B,C,D be square matrices. Then, the trace of a product is invariant
under cyclic permutation of the factors:

Tr (ABCD) = Tr (DABC) = Tr (CDAB) = Tr (BCDA) . (345)

Hence,
Tr (Ψ†γ0MΨ) = Tr (MΨΨ†γ0) . (346)

Given

M =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 , (347)

then

γ0M =


m11 m12 m13 m14

m21 m22 m23 m24

−m31 −m32 −m33 −m34

−m41 −m42 −m43 −m44

 . (348)

ΨΨ†γ0γµ = Tr (γµΨΨ†γ0) =
1
4Tr (γµψγ0ψ̃)

= ⟨ψ†γ0γµψ ⟩ = ⟨ γµψγ0ψ̃ ⟩
= ρ⟨ γµv ⟩ = ργµ · v = ρvµ . (349)

The Tetrode tensor in matrix form is Eq. (A15):

Tµν =
iℏ
2
(Ψ†γ0γµ∂νΨ− ∂νΨ

†γ0γµΨ)− eAνΨ
†γ0γµΨ , (350)

which correctly adds a subscript to the vector A.
The first term of this last equation becomes

iΨ†γ0γµ∂νΨ = iTr (γµ(∂νΨ)Ψ†γ0)

=
i

4
Tr (γµ∂νψ[ 1 + γ0 − iγ2γ1 − iγ5γ3 ]ψ̃)

= i⟨ γµ∂νψψ̃ ⟩+ i⟨ γµ∂νψγ0ψ̃ ⟩+ ⟨ γµ∂νγ2γ1ψ̃ ⟩+ ⟨ γµ∂νψiγ5γ3ψ̃ ⟩

= i⟨ γµ∂νψγ0ψ̃ ⟩+ ⟨ γµ∂νψiγ5γ3ψ̃ ⟩ , (351)

which is Eq. (A16). The two terms that dropped out had only terms with an
odd number of vector factors in their products, which can only produce vectors
and trivectors in this algebra.

The second term of (350) becomes

i∂νΨ
†γ0γµΨ = i⟨ γµψγ0∂νψ̃ ⟩+ ⟨ γµψγ5γ3∂νψ̃ ⟩

= i⟨ γµ∂νψγ0ψ̃ ⟩ − ⟨ γµ∂νψγ5γ3ψ̃ ⟩ . (352)
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Putting this altogether into (350), we get Eq. (A18):

Tµν = ℏ⟨ γµ∂νψγ5γ3ψ ⟩ − eρvµAν , (353)

10 Appendix B: Divergence of Jµ

I repeat the error correction the preprint made concerning Ref. [1]: Equation
(5) should be

□ · Jµ = −2m sinβe3 · Jµ + 2ei(e3 ∧ e0 ∧ Jµ ∧A) . (354)

So, now we derive this last equation by use of the Dirac equation. The Dirac
equation (2.15) is given as

ℏ□ψiγ3γ0 = mψγ0 + eAψ . (355)

By multiplying this on the right by iγ0γ3γµψ̃, we get

ℏ(□ψ)iγ3γ0 iγ0γ3γµψ̃ = mψγ0iγ0γ3γµψ̃ + eAψiγ0γ3γµψ̃ . (356)

Or,

ℏ(□ψ)γµψ̃ = −imψγ3γµψ̃ − eiAψγ0γ3γµψ̃

= −imρeiβRγ3γµR̃− eρiARγ0γ3γµR̃

= −imρeiβe3eµ − eρiAe0e3eµ . (357)

What about this ρ that I got that didn’t appear in the preprint?
So, what is Jµ?

Jµ ≡ ψγµψ̃ . (358)

And we have the identity
□ · Jµ = ⟨□Jµ ⟩ . (359)

Hence,

□ · Jµ = ⟨□Jµ ⟩ = ⟨ □̇ψ̇γµ
˙̃
ψ ⟩

= ⟨ (□ψ)γµψ̃ ⟩+ ⟨ □̇ψγµ
˙̃
ψ ⟩ . (360)

We can transform the second term of this into a copy of the first term:

⟨ □̇ψγµ
˙̃
ψ ⟩ = ⟨ γν ∂̇νψγµ

˙̃
ψ ⟩ = ⟨ γνψγµ∂νψ̃ ⟩

= ⟨ γνψγµ∂νψ̃ ⟩∼ = ⟨ (∂νψ)γµψ̃γν ⟩

= ⟨ γν(∂νψ)γµψ̃ ⟩ = ⟨ (γν∂νψ)γµψ̃ ⟩

= ⟨ (□ψ)γµψ̃ ⟩ . (361)
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Hence, (360) becomes

□ · Jµ = 2⟨ (□ψ)γµψ̃ ⟩ . (362)

Now, we borrow from (357) and use that eiβ = cosβ + i sinβ and that
eµ = Jµ and separate out the two terms:

□ · Jµ = −2

ℏ
⟨ imρeiβe3eµ + eρAie0e3eµ ⟩

= −2

ℏ
⟨ imρ(cosβ + i sinβ)e3Jµ ⟩ −

2e

ℏ
ρ⟨Aie0e3Jµ ⟩

=
2m

ℏ
ρ sinβ⟨ e3Jµ ⟩ −

2e

ℏ
ρ⟨Aie0e3Jµ ⟩

=
2m

ℏ
ρ sinβ e3 · Jµ − 2e

ℏ
ρ⟨ ie0e3JµA ⟩ . (363)

The selector of the last term of this can be rewritten as

⟨ ie0e3Jµ ⟩ = ⟨ iA ∧ e0 ∧ e3 ∧ Jµ ⟩ = ⟨ ie3 ∧ e0 ∧ Jµ ∧A ⟩ . (364)

11 Conclusion

Well, it’s nearly half a century since this Hestenes paper was published, and its
had too little attention from the physics community in my opinion. Most of
the time that Hestenes converted some standard form of math or physics into
geometric algebra or geometric calculus, he’d get a cleaner formalism and often
a widened domain of applicability. But for the Dirac equation, conversion is
altogether different, for it entails a completely new paradigm in which the Dirac
equation and the wave function are replaced by equations of conserved quanti-
tites for observables and their constituitive relations. It has also introduced a
new parameter β, which is still somewhat mysterious.

I can see how that is a lot to accept for your typical conservative physics
professor, who would rather play it safe. But I’m now retired and ready to sink
my teeth into this subject.
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