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Abstract

This paper contains my personal notes on the paper Local Observables
in the Dirac Theory by David Hestenes."! My comments are meant 1) to
fill-in some of the steps in the mathematical derivations, and 2) to report
on a few mistakes that remain in the “preprint” version of the paper.
As a word of warning, this paper will make no attempt to teach the full
fundamentals of geometric/Clifford algebra, though it will spend some
time enhancing the discussion on it presented in the paper. Nevertheless,
this paper emphasizes the mathematics rather than the physics.

Introduction

The paper referenced is available on line as a “preprint” at
http://geocalc.clas.asu.edu/html/GAinQM.html .

However, the preprint has some errors in it and I shall endevour to point them
out as I find them. However, the published article has a few errors as well, and
T’ll point them out too, as I find them.

I want to point out that I consulted the following paper (the first three
pages) by Stephen Gull when I sought to correct the errors in the “preprint”
version of the paper:

https://www.mrao.cam.ac.uk/"steve/MONOPOLE. pdf

I assume that the reader has a pretty good grasp on geometric algebra, as
this is necessary to follow the presentation. There are many books that can be
purchased to learn this algebra, and many on-line articles — some free, some
not — that can be acquired.

1D. Hestenes, “Local Observables in the Dirac Theory,” J. Math. Phys. Vol. 14, July
(1973). p.893-905



1 The Wave Function

We introduce our formulation of the wavefunction as follows (Eq. (1.1)):
1.
v =p'%2"R, (1)

where p and § are scalars of the theory, which will be explained later. R is an
even multivector.

We can think of Eq. (1) as a canonical factorization of the wavefunction in
analogy to how one factors matrices into some canonical factorization.? We’ll
properly define ¢ soon.

We think of R as a Lorentz rotation operator with constraint

RR=1, (2)

where the “operator reverses the ordering of all geometric products. Scalars and
vectors are, of course, invariant under the reversion operation. We get that

P = pe'? (3)

where p is the proper probabillity density.

Next, we define a mutually orthogonal set of vectors v, (¢ = 0,1,2,3) to
form a frame, with 73 = 1 and the rest square to —1.

The following are basic results that we’ll use throughout the rest of the

paper:
L= Y0Y17273 - (4)

i~ =i, (5)

The proof of this is that it requires an even number of transpositions to bring

i~ = 372717 (6)

back to the original form ~yy1727v3 = 4.
As a consequence ‘ ‘
(eP)y~ = ¢, (7)

For all v, (1 =0,1,2,3):
Yt = —1Yu 5 (8)
and as a consequence,

_iﬁ'}/u . (9)

The function of the spinor R is to rotate this frame according to the rule

Yue'? =, (cos B +isin B) = (cos B —isinB)y, =e

ea = Ry R (a =0,1,2, 3)a (10)

2See Appendix A for a correlation of the conventional matrix version of the Dirac theory
to the geometric algebra version.



which is Eq. (1.2). It’s pretty easy to see that if B is any bivector, then Bi =i B.
And, as a consequent, e’ B = Be'P. It’s likewise easy to see that for any even
multivector M = (M ),, Mi = iM and e?M = M which is why e’
commutes with R, and for that matter with R.

By convention, the vectors ey = v and e3 are granted special physical mean-
ing in the theory. The first is the local particle velocity in spacetime and the
second is the local spin direction. My question now is, How much does this
conventionalization restrict the choice of how to generalize the Dirac equation
(24) to the first generalization of it here in Eq. (25)7

We find the probability current as

Yyt = pRyoR = pv, (11)
which is Eq. (1.3). Let’s prove this.
¥rov = (p'/2e3* P Ryyo(p'/ 2 R)”™
= (P72 R)yo(R(e)~p!/?)
= p(e? Ryyo(Rex™”) = pe?™ Rypes R
— peb e Ry R

= pR’Yoé = pv. (12)
For the local conservation of probability we have Eq. (1.4):
O (pv)=0. (13)
The proper mass density is mp. The local spin vector is Eq. (1.5):
h
5= 5es, (14)

which converts the ‘physical spin direction’ ez to an angular momentum vector
s. We define the bivector version of the spin as

h h h ~
S=isv= §’i63€0 = je2e1 = invalR, (15)

which is Eq. (1.6).
Although the frame of +,’s is arbitrary, the instantaneous comoving frame
of v,’s is intrinsic to the electron itself, and the rotor R connects them.
Equation (1.7) in the article is given as

R=(AA)"1/%4, (16)
for some field A. We show that RR = 1:
RR = (AA)~V2A[(AA)~1/2 4]~
= (AA)"Y2AA(AA)"1/?
= (AA)"Y2AA(AA)"1/?
= (AA)TAA
=1. (17)



At this point I want to perform a calculation. But I need some prelimi-
nary results first. Let’s begin with this: Anytime we take the scalar part of a
geometric product of multivectors, we can cyclicly permute them as follows:

(ABCD---Z)=(BCD---ZA)=(CD---ZAB) = etc.. (18)
And, of course, we can also cyclically permute going the opposite direction.

So, I wish to prove that s-v = 0. This makes sense, since v is a timelike
vector in a given frame and s is a spacelike vector in the same frame.
Also, since Y1) = pe'? | then
V() = P(pe? ) = vip(pe”), (19)
or _ B ‘
(¥)* = Pip(pe'), (20)
Barring the case that Jd) =0, then

= pe. (21)
So,

50 = (Bumsd) - o)

A -
§< Yysyor) )

g< Yys(pe)yorh)

B~ .
= §< Vp(pe” ) vsv0)
hp?

= (e (e”P)ys Ayo)

2
p°h
= 7< Y3 AY0)
0, (22)
since the contents inside the selector is pure bivector. (Remember that the 7,’s

are an orthormal set, given that * -, = §.)
One more result. Let’s show that v - S = 0, using that v? = 1.

v-S=w-(isv) = (visv)
= (wvvis) = (is)
=0. (23)



2 Energy-Momentum Tensor

According to Dirac, the total energy of an electron in a stationary state is given

as
(-1)Y2ho, 0 = BV, (24)

which is Eq. (2.1). Of course, in this last equation, ¥ is a column spinor. But
in the geometric algebra of spacetime, we can rewrite this as Eq. (2.2):

Opyomh = B, (25)
where 271 is a bivector that defines a plane of rotation, can be re-expressed as
Y2v1 = 07370 = 103 - (26)

We ‘guess’ at a proper generalization of (24) as Eq. (2.3):

Ty = {07 (D romih — e A1) )
= {70120 ) — e Au{10Uyut))
= D {(7u(0)insth) — e Au{ (0%) )
= W7D 0)iv3) — epuu A, (27)

where we have corrected a typo in the first line involving the gamma next to
the A. So, let’s investigate how this demonstration works. In the third line we
used (11) and the fact that

(VY) =V Y=y (28)

The average energy in inertial system 7 is

(E) = /d?’x (Too + epvoAp) . (29)
If we rewrite (27) as
Tuu + e<fYOQZ’7/JAV > = hWM(auw)Vﬂﬂoi% ) (30)
and then set p = v =0, we get [Note: dy = O]
Too + (Y0040 ) = i{ 70(Bo¥)y21170% ) , (31)
or N N
Too + epvoAo = (70 (00)v2v170%R) = (Yo¥Y0(00¥)y2n1 h) . (32)

Therefore, (29) becomes
() = [ (Too + epiod) = [ d* (rodro@inanh)

ZE/d%(’YoJWodJ% (33)



since
dopyenih = Ev. (34)
But _ ~
(Y070 ) = (Y0¥ ) = (pvy0) = pPro = po, (35)
which is Eq. (2.6). Therefore, (33) becomes

(E):E/d3scp0:E, (36)

which is Eq. (2.5).

We are now to review Tetrode’s version of the electron’s energy-momentum
tensor in geometric algebra. See Appendix A for the matrix version.

T(n) is a linear tensor that denotes the energy-momentum flux through a
hypersurface of nornal n. Hence,

T(n) =n"T(y.) =n"T,, (37)

which is Eq. (2.7). Obviously, T}, is a vector quantity. To get the 16 components
of T, we have

Ty =T, v and T,=T,"", (38)
which is Eq. (2.8a,b). The proper energy-momentum density is
pp = T(v) = v9T,,, (39)
which is Eq. (2.9). We can write T}, as (2.10):
T, = pvup+ Ny, (40)

where IV, is normal to the streamlines, and, of course, v*v,, = 1. The N, are
as yet unconstrained degrees of freedom, except that we require that v*N, = 0
so that we can recoup (39) from (40). We'll return to this tensor later.

We define the “transposed” tensor of T),, (Eq. (2.11)) as

Ty =" T = 7[5y - (Qutbinsth )1 — epuy Ay |
= h(Ouivsy )1 — epvAy, (41)
where the v in the right term on the bottom line does not have a subscript, and
thus corrects a typo.
However, this does not yield the correct result using the value for 7}, as
given in (27).
To get Eq. (2.3) of the paper, I used
Tul/ - <7012)/7M(8Vw)7271h - €Au¢>
= (1071 (¥)renh) — (e Avvoyuy))
= h(Y7u(0u) 1271170 ) — (e Avtbyotyy )
= "Y1 (0u)ivs ) — ep(Avvypu)
Ay (Ou)ivst ) — epAu (v ) - (42)



So, we have the special case
Too = h{70(B0®)ivst) — epAo{vo) (43)
Or, _
Too + e Aopvo = {70 (do)ivsv ), (44)

where vg = (v ).
Then,

Ty =7"Tw = ’Yu[h<’7u(6u¢)ivglz> —epu, Ayl
= Wy (1 (8u)iys ) — epvA,,
= by - ((Du)ivsth )1 — epuA,
= h{(9,)ivs) )1 — epvA, (45)
For our next result, we employ a simple identity. Let A be vector valued.

Then, _
2A=A+ A, (46)

slnce A = A. Note that 7 = i and iy, = —7Yul, and for any multivector M,
M~ =M:

2( 0, izt )1 = (Ouinst )1 + (Dutbinsth)y
= <au¢i731/) )1+ <1/W313u¢>1
= <5;ﬂ/)1'731/) )1+ <¢’Y318ﬂ7/)>1
= (0 ivs¥ )1 — (Piv30,0 )1 - (47)

Therefore, we've arrived at Eq. (2.12):

~ I ~ ~
h{ Opiysp )1 = 5[(@1{)1’731/) )1 — (iy30u)1]. (48)
From Eq. (1.5) of the text, we get

Lhpyath = ps, (49)

from which we get B
ips = shiysih. (50)

With this result, (48) becomes (by use of the product rule, which works so simply
because 0, is a scalar operator):

h ~ ~
GM(iPS) = 5[6u¢i731/) + W“Y:aa;ﬂﬂ ) (51)

which is Eq. (2.13). It’s important to note that to reduce the number of paren-
theses in a given expression, Hestenes has apparently followed the rule that the



action of a derivative on an expression extends only to the variable closest to it
on its right. Therefore, we interpret

au@bi'yg{[; as (3M/J)i’73{/;~ (52)

I sometimes make this explicit, which is why my use of parentheses is a bit
different than that of Hestenes.
On multiplying (51) through by *, we get

A ~ ~
O(ips) = 5[(D¢)i731/} + " Piy30u1)]

— g[ (Dw)i73121v+ ’Y“(W%@A@l}
= g[ (O)ivsth + v (ivsduh) 7 ]
= g[ (O)ivst) — 'y”(aulﬂi’)’a%;)l] , (53)

which is off by a factor of 2. Obviously, I need more work on this to get the
text’s result:

R(OW)ivs = Ay 8, ivsh )1 + O(ips) (54)

which is Eq. (2.14).
As presented in Ref. [5], the Dirac equation is

hOiyzve = myy + e A, (55)

which is (2.15). Next, we multiply on the right by 701;, remembering that
U1p = pe'? | to get Eq. (2.16):

hOYivsh = mpe + eApv, (56)
where I am interpreting the LHS as meaning
hOwiyst = h(Ow)ingy. (57)

To modify this last result to get the next one, we need the following facts:

pp = v"T), , (58a)
Ty = h{Qbingth )1 — epv Ay, (58b)
R(O) iyt = Ryt D bivath )1 + O(ips) . (58c)

We begin by multiplying (58b) on the left by ~*:
VT = W (ubinst )1 — eApo. (59)
Next, we use (58¢) to get

YT, = R(O)ins — O(ips) — e Apuv . (60)



Then we use (56) to get Eq. (2.17):
Ty = mpe —Oips) = mpe'® +i0(ps), (61)

which is true because ¢ anticommutes with all vectors, and [J act to i as just a
vector.

To find the pseudoscalar part of (61), we first expand it:
YT, =mp(cos B +isinB) +i0- (ps) +i0 A (ps). (62)
Thus, the pseudoscalar part is
0=mpsinf+0-(ps), (63)
which gives us Eq. (2.18)
O- (ps) = —mpsin 3. (64)
The trace of the Tetrode tensor Tf' comes from the scalar part of (62):
v T, =T, -v* =mpcosf, (65)
which is (2.19). The bivector part of (61) yields (2.20)
YEANT, =T, A" =i(OAps) = -0 (ips). (66)
Let me demonstrate this reasoning. Let a be a vector, then

i(0Aa)=(i0Aa)s
= (10a ),
= (—Uia)s
=—-0-(ia). (67)

Changing the dummy indices of summation in (62), we can write
Ts A" = (v* A" ) Tga - (68)
The easiest way to prove this is to start on the RHS and derive the LHS using
38).
o (v A Tpa = (Tpav* AYP) = Tg A7 (69)
On multiplying by an antisymmetric operator:
(A w) - Ts A = (u Am) - AY)Tga = T = T, (70)
where we used the identity

(e Aw) - (Y A7) = 838 — 650, (71)



Hence, the first part of (2.21):
(Yu Aw) - (Y AV )Ts0 = (6267 = 6000) Tp = Ty = Tope - (72)
Now we refer back to (70) and get the second part of (2.21):
(Ve A) - [HOAps) ] = ivu Ay ADA (ps) = —€uapd®(ps”) . (73)
Going back to (58b) and taking the partial by u, we get Eq. (2.23):
OuT" = K (94)irat )1 — ey (prA»)
= h{(D?P)ivav) )1 — eDu(pvAt), (74)

where, of course, (? = 0,0*. Okay, so now we differentiate T, which we get
from (40) in the raised form as

TH = pvt'p + N*. (75)
Then,
OuTH = Ou(pv*p) + OuN* . (76)
Equation (2.22) claims that
9,TH" = 0,T", (77)

but I don’t at this time have a proof for this.
Now, we wish to express the first term on the RHS of (74) in terms of
observables. First, we take the gradient of (55):

hPivsye = mOyyo + eDAY. (78)
Next, we multiply on the right by ’yozZ:

W) ivsd = m(O$)P + e (@A) 00 (79)
Now, we try to get Eq. (2.24), which is

K izt = b (€2 A2 — m2)ips + e(OA) pv + 2e(A-Tp)yor.  (80)

To arrive at this last equation from the equation before it, we need to do
two things. The first is to expand the expession [JAvy. The second thing is to
‘remove’ all gradients of v; that is, expressions of the form [Jvy. We can look to
the Dirac equation for the suitable expression to use to replace it with.

We begin by expanding (JA

OAy = OAy
= (DA + (DAY)
= (O0A) + (24 - Oy — AOY)
= ([@4)p +2(A-0y) — (AQy). (81)

10



So, the second term on the RHS of (79) becomes
e(@ A0 = e[ QAW +2(A - 0) — (ADY) ot
e[ (D409 +2(A - D)yov — (AD¥)r00]
= e[(OA)pv +2(A-O9)od — (ADY)09].
Substituting this last result into (79), we have that

h(O*)ivse = m(DY)d + e[ (OA)pv + 2(A - Ov) 01 — (ATY) 9]

= m(O)P — e(ATY) 709 + e (OA)pv + 2e (A - Ob)v09 -

Let’s now restate the Dirac equation and then solve it for (.
hYyiyzyo = miyo + e A
First, we multiply through by &~
Ovivsyo = b~ [myyo + eAy].
Next, we multiply through on the right by ~9vsi, to get
Oy = ™' [myro + eAy Jyovsi
= h ! [mysi+ e A(Yyo7si) ] -
Thus, m(Dl/))tZ becomes
m(O9) = mh~! [mipysiv) + e Apyosiv]
= mh™ ! [~midyst + eAivyoysd]
= mh ™ [—mips + eAiyoys] .
Now, we do similarly to e(ADz/J)fyOzZ:
e(AOP)yot = eh ™ Almysi + e (Yy0ysi) |ror
el Almysi + e (Yyoysi) nod
eh™ Al —miysr00 — eAiys)]
eh_lA[—miz/ryg’yOQZ —eAips].

Substituting these into (83), we get

(82)

(83)

h(OP9)insth = mh~ [ —mips + e Aigyoysyy ] — eh ™ Al —mivysyot — e Aips]

+e[(OA) pv +2(A-Ov)rov ]

= L7 [—mZips + emAihyys] — B [me Aiyoysih — 2 A%ips]

+e[(OA)pv +2(4-0v)yd ]
= i [ —mZ%ips + €2 A%ips] + e(DA)pv + 2e(A - )yt
=h (242 — m?)2ips + e(D A)pv + 2e(A - Ov)y01)

11

(89)



where the two terms involving i@[wo’yglz cancelled each other. And this is Eq.
(2.24).

Going on. We want the vector part of (89). We begin with the identity
(e(TA)pv)r =ep(ONA)-v+e(@d-A)pv. (90)
So, the vector part of (89) is
W OPpivst ) = ep(DAA) -v+e(0- A)pv +2e((A-O)yor ). (91)

and we need a more elegant expression for the last term. We start with the
familiar equation

Yot = pu. (92)
On differentiating this by A - O, we get
(A~ D)0y +¥y0(A-O)g = A-O(pv) . (93)
But (A - O¢)y0 = ¢0(A - D)), so
2((A-O¢)y0P)1 = A-D(pv) . (94)
Therefore, (91) becomes
R D2Yivs )y = ep(OAA) -v+e(0- A)pv+eA-O(pv), (95)

which is the second result of (2.25). But this equation can be put into a simpler
form, beginning with the fact that O A A = F. We can also perform some
‘tensor’ operations:

eOu(pvA*) = ed,(pv) A" + epvd, A
=eA -O(pv)+e(d- A)pv. (96)

Hence, (95) becomes
W O*pivsih )1 = epF v+ e (pvAr) (97)

which is (2.25).
Now, defining f = F - v and using (74) and (77), we get

0T =peF-v=pf. (98)
Then, coupling this with (40), we get part of Eq. (2.26):

0,TH = 0y (pv*'p) + OuN*

= Ou(pv")p + pv"0up + 0, N*
=pv-Op+9,N"
=pp+ O N' =peF-v=pf, (99)

12



where we have assumed that 9,(pv*) = 0. But this is easy to prove using

tensors. First, recall that
O (pv) =0.

So that

O (pv) =7"0y - (pv" )
= ’YV : VMau(pUH)
=04, 0y (pv*)
=0 (pv") =0.

Equation (2.27) is

Ou(THF Nz) =0,(TH Nx) + 0, (TH N )
=pfAxc+THAy,.
With help from (66) we have Eq. (2.28):
T, Ay* = —0,5".
For the next equation, we remember that S = isv.
St =pis ANy" = p(is) -y =p(SAv)-y*.

Now,

(SAv) A" = (Svy" )z = —(Svy" )y

= —(7"08)2 = (7"vS )2
=4t (wAS)=4"-vS+vy"- S
=S+ 5y,

Thus, Eq. (2.29) is
St = pvHS + pS-~yHv.

If we define the vector J* as in Eq. (2.30):
JH=TF AT+ S*,
then, using (103), we can rewrite (102) as
o' =pfne,
which is (2.31). The proper angular momentum density is given as
J(v) = v, J" =v,T" N +v,5",
which is almost (2.32). For the first term on the RHS, we have that

v, T Nx = pp,

13
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which used (39). Now, using that
S=pluSt=isnv, (111)

then, finally, (2.32):
Jw)=ppAz+S9). (112)

Remembering that v,v* = 1, for the second term we have

v 8" = pv, S+ pS - (v )v
=pS+pS-vv
=pS, (113)

since S - v = 0.
Using (103) and (107) we get

OpJ" = 0,(TH Nx) + 0,5"
= (0, T*) N +T" Ny + 0,5"

=0, T")Ne. (114)
Defining M* as
Mt =pS - -~"v, (115)
which is Eq. (2.33). Then
OuM* = 0,(pS - y"v). (116)

All this can be combined to yield Eq. (2.34):
pS’-i—pp/\v:ny/\N”—(')MM“, (117)

and S = v -0OS. (By the way, we have corrected here an error in the preprint.)

3 Local Momentum and angular velocity

Starting with

o = RYaR, (118)
we get Eq. (3.1):
Yo - Oeq = 0peq = %[Qu,ea]zﬂu-ea, (119)
where B
Q, =20,R)R. (120)
Proof:

14



Let’s begin with RR =1 and differentiate it by 0, = v, -, to get
(0,R)R = —RO,R. (121)

By first taking the reverse on both sides of this, we can then solve it for Bﬂé,
to get _ _ _
OuR=—-R(O,R)R. (122)
Therefore
Yu-Oeq = 0peq = 8HR’ya§
= (0uR)VaR + RYa0,R
= (,R)RRvoR — Ry, R(3,R)R
= (0,R)Rey — (3, R)R
= %Q#ea — %eaQu

=3[ ea] = Q- ea- (123)

The frame of e, rotates with angular velocity €2,,. To make this meaningful,
we must express this rotation in terms of local variables. To that end, define
P,, and g, according as

P, +iq, = g(aﬂR’yﬂlf? - R’)/Q’Ylaﬂé) , (124)
which is Eq. (3.3). Remembering that
S=isv= gegel = ngzfylE, (125)
then . N N
0uS = 5(3,LR7271R + Ryov10,R) . (126)

We also get (first by virtual emplacement of 1 = RR and then by using the
recent definitions) that

BOu Ry R = [ (20, RIRI(G R ) = 9,5, (127
which is Eq. (3.5). Adding (124) and (126), we get (3.6):
P, +iqu+ 0,5 = Q.S = hd,RyanR. (128)
Taking the scalar part of this, we get Eq. (3.7):
P,=9,-S=h(3,RpnR). (129)

To get at the pseudoscalar part of (128), we may multiply through by —¢ and
then take the scalar part of the result [Eq. (3.8)]:

Gy = —1Qu NS = h{(=))0,Rram R), (130)

15



which corrects a misprint in the preprint and a couple in the published article.
Last, but not least, is the bivector part of (128):

0uS =8, x8. (131)
Adding in some identitites, we get
0,8 = Qx5 =1(Q,5-50Q,) = 3[Q,,5], (132)

which is Eq. (3.9)
Now, we solve for ,,, using (128), we get (3.10):

Q, = (0,8 + P, +ig,)S™"
= 5(9,0)vs ™t + (0u8)s ™+ quusTt 4+ PSS, (133)
where §71 = | §|728 = is~tv, s71 = —| 5| 2s.
Proof: For my proof, I use that S = ivs, and S~! = —vs~'i. Then I just take
the partial derivative:
0uS = 0y (isv) = i[(Ous)v + s(0,v) . (134)
Therefore
(0,8)S7! = (9,8)s™ + s(0pv)vs~t. (135)
So, (136) gives us
Q.= (0,85 + P, S +iq,S™*
= s(0v)vs 4+ (0,8)s  + quus !t + P, ST, (136)
which is Eq. (3.10). Next, we need to re-express ¢,. We begin with
Ouv =9, -v. (137)
On dotting (136) by v, we get (where v - s = 0 implies that v - s~ = 0)
Qv =[5(0v)vst + (0us)s 't +quus Tt + PSS ]

= [s(9v)vs™ 4+ (0,8)s  + quusT] v

— [5(0u0)es™ ] v+ [(@s)s™ v+ quloAsT ] v
=[s(0v)vs ] o+ [(Ous) AsT ] v —qus?

=[s(0v)vs v —stv (Ous) —qusTt. (138)

Finally, to the first term. (Note that for vectors a,b, ab = 2a - b — ba.)

[s(0v)vs™t]-v=[s(0w)vs ] v

=vs - (0u8)s !+ 0uv — qus . (139)
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where, owing to the fact that v> =v-v =1,v-(9,v) = 0. So, plugging this last
result into (138), we get

Qv =", -v=5"(v-0,8) +0v—qus ". (140)
On dropping the d,v term from both sides, we can solve for g,,, to get
qu ="0- 8u57 (141)

which is Eq. (3.11). With g = vy, we get (3.12):

qg=""v-0,s. (142)
But because v - s = 0, then
Ou(v-s)=0, (143)
from which we get that
v-0us=—5-0u0. (144)
Hence, ] ]
g=7"v-0ys =4"0v-$§=0v-5. (145)
Now, for another identity:
v-(OAs)=v-Os—0v-3, (146)
From this we get that
Ov-§=—v-(OAs)+wv-Os. (147)
Therefore, (145) becomes
g=""v-0ys=—v-(OAs)+v-Us, (148)
which is Eq. (3.12).
Next is Eq. (3.13):
P, = —geg -Ouer = gel -Opues . (149)

Let’s begin with the easy part. Since es - e; = 0 then —es - 9,61 = €1 - 9e0.
Now, since es = ( Ry2R )1, then

duea = ((0uR)12R)1 + (R120,R )1 . (150)
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Then,

e - Opes = (eﬂ@ﬂ%)’mé) + <€1R’}/28HE>

= (e1(0uR)2R) + (e R0, )"

= (e1(0uR)R) + ((9uR)y2Rer )

= (e1(0uR)nR) + (e1(duR)nR)

= 2(e1(0,R)12R)

= 2((9uR)y2RRer)

= 2((OuR)12R(R1 R))

=2((OuR)12mR)

=2n7'P,. (151)
On solving this for P,, we get (149).

What happens to €, if we make a phase change on R according as

R — Re™2mh/h, (152)
Qu — Qu+9,AS. (153)

And from (120) we have Eq. (3.14):
P, — P, +0,A. (154)

The calculation is straightforward this time. [Note: 2, = 2(8HR)§]
QL — Z(GMRe_'Y”lA/h)eW'“A/EE
= 2[ (9, R)e 1AM A R(,'V?}Zl (8,A)) Jer AR R

= 2(8,R)R — 2R| ”h% (9.M) R

= 20, R)R — 2(aﬂA)R”h71 R
=Q, + (0,A)S . (155)
Now, we use (1) and (120) to get Eq. (3.15):
Butb = Dl p 1/2 iﬁR]
= 207Y2(8,p)e R+ p/2i(0,8)e R + p'/?e® 8, R
= 19, np)p* 2P R+ p/2i(8,8)e" R + p*/?¢'® R(RO,,R)
(0 In )t + (9, 8)0 + V(D R)R
(O Inp)¢p + (0, B)Y + $¥2(0,R)R
(O In p)tp + (8. B)¢ + 599,
[0 (lnpe )+ Qul. (156)

NI NI NI N
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Now we multiply through on the right by hi’y;ﬂ; to get Eq. (3.16):

h(auw)i’%dj = %[au(lnpem) + Qu }¢hi’Y3ZZ
1

=[Py +igu+Wulpv,
where we used that %h’l/}i’}/g'l:[; = pSv and
Wy = (0e7) 10, (pe"?S) = 0,5 + (D, In p + 0, 8).
On extracting the vector part of (157), we get (3.18):
(hOupinst )1 = p(vBy —v - W),
from which we get that

hoyy - <5y1/)i731z>1 = P(’)’u “vPy, — - (v- W#))
:p(UVPM+ (v A7) 'Wu)7

(157)

(158)

(159)

(160)

which is (3.19), and this corrects a mistake that’s in both the preprint and the

published article.
On switching the indices on this last equation we have that

(hv,0,0ivs0 )1 = p(vu Py + (0 A7) - W)

Next, remembering that we introduced T}, as

T;w = h(%(aﬂﬁ)i%im - epv,uAu .
From these last two equation we get
Ty = p(vﬂPy + (A - Wl,) —epv, A,

Then, using Eq. (3.20):
P,=p,+eA,,

and this equation and the one before it, we get
Tyw = p(vu[pu +eAu] + (v A) - W) —epuu Ay
= P(%Pu + (v /\’YM) ) WI/) .

along with
T;t = puup + Nu ’

we get
T;w = PUuPv + Nm/ )

which is Eq. (3.21). So, on comparing (167) and (165) we have that

Ny =pwAy,) -W,.
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(161)

(162)

(163)

(164)

(165)

(166)

(167)

(168)



Thus, using that (v Avy,)-S = (vVA~v,)-(isAv)=0:

)Wy
vAY) - [0uS + S0, Inp+1i0,0)]
)= 0,8+ p(wAv) - [S@Inp+id,B)]
)- 0S4+ p(vAny) - (Si0,B)
VAY) - 0,8 — ps,0,3, (169)

which is Eq. (3.22). Let’s add some further calculations:

p(U A 7#) : (Si&,ﬁ) = p(v A 'VM) : ('Usauﬁ)
= p(auﬁ)(_'y,u : 5)
=—ps,0,0. (170)

4 Integrability Conditions

From (3.2) we have again N
Q, =2(0,R)R, (171)
which, by a little algebra, can be writtten in the form of Eq. (4.1):
OuR=3O.R. (172)
On differentiating this, we get (4.2):
9,0, R = 3(8,Q, + 3Q0,0,)R. (173)
If we require the standard integrability condition on partial derivatives, then
0,0,R=0,0,R, (174)
which is Eq. (4.3), then
0 — 0,0 = 3, Q1 (175)
which is Eq. (4.4).
To arrive at Eq. (4.5), we have a bit of work to do. So, let’s begin with (128)

[Eq. (3.6)]:
P, +iqu+ 0,5 = Q.S (176)

and take its partial by v:
0P, +10,q, + 0,0,5 = (0,Q,)S +,0,5 . (177)
On switching the indices, we get

0,y + 0,0y + 0,0,8 = (8,2,)S + 2,8,,5 . (178)
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Subtracting (177) from (178), we get
0P, — 0, Py +1i(0uqy — 0pqu) = (0,0 — 0,9,)S + (0,0, —Q,0,)S . (179)
Using (4.3) we get
0uPy — 0, Py +i(0uqy — 0q) = [, 015 + (2,0, — Q,0,)S . (180)

Obviously, I need to do more work on it to get Eq. (4.5). The correct answer is

given as
0P, — 0, Py +1i(0uqy — Ovqyu) = %[8,,5, 8HS]S_1 . (181)

The scalar part of this last equation is Eq. (4.6):

P, — 0,P, = 1[0,5,0,5]- 57!
=(9,SN0,S-57")
=(0,580,5871). (182)

Now, we make a substitution: P, = p, +eA,:
aupy - &Jm + B(a“Al, - aVA/L) = (6VS(9“S) : Sil s (183)

and this corrects a misprint in the preprint version of this equation. But

Ay, —0A = (W A7) - (ONA)=F,. (184)
Therefore,
0upy — Oypy + eF, = (8,509,8) - S, (185)
which is Eq. (4.7). However, my version of (4.7) comes out to be
Oupy — Oupy + eFu, = (0,5 ND,S) - St (186)
The reason these two equations are equivalent is because (8,5 - 9,5)-S~! =0,

because the inner product of any multivector with a scalar is zero.

5 Physical Content of the Dirac Equation

We want the Dirac equation expressed in local variables to ferret out its physical
content. By multiplying (55) on the right by ¥, we get Eq. (5.1)

R(OW)ivsy0t = myor) + e A
=mpv + eApe'’. (187)

Using (156) and

Py +iqu+ 8,8 =Q,S = hd,RyonR, (188)
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we get Eq. (5.2):

~ _ R -
W)y = [Ou(pe’®) + Qupe |5 Rom R
= au(ﬂew)s + (Pu + iqu + 8MS)Peiﬂ
= (Pu+ iCIu)Peiﬂ + au(pewS) : (189)
1.
But let’s do this in parts. First, we remember that ¢ = p1/26§zﬁR. Thus,
~ 1, - L
h(aul/J)’h’Yﬂ/) = h[%/flﬂ(aup)eQ ’R+ %Pl/z(zauﬁ)eQ ’R
1. 1. ~
+p'2e2(0,R)] p*?e2yom R
h . ) ) ~ ~
= 5[((%/)) e + pe'®(0,8) + pe®2(9,R)R] Ryam1 R
, R ~
= [0u(pe™) + Qupe™® 13 Ry . (190)
Next,
) iB ig It D _ iB iB
[0u(pe™) + Qupe” |5 Ryem R = [0,(pe™) + Qyupe ]S
= 0,(pe”®)S +Q,Spe'’
= 8/t(Pew)S + (Py+igu + 3“5),061'6
= (Pu+ iQ#)Peiﬂ + 8#(P6iﬁ5) ) (191)

where we used (176) and then recollected terms. Multiply through (190) on the
left by ~+*, we get

WD)yt = (P + qi)pe + O(pe?S) (192)
which is Eq. (5.3). Putting (187) and (192) together we have that
pe”P(p—iq) = pmv —D(pe”S), (193)
which is Eq. (5.4). Multiply this through by ¢ on the right to get:
pe~P(—ip —q) = pmvi— O(pe?iS), (194)
which simplifies to
pe”Bip+q) = pmiv + O(pe'?iS) . (195)

So, why did we multiply (193) by the unit pseudoscalar? We did because we
want the pseudovector part of (193), and we can get at that by taking the vector
part of (195), which gives us

p(psin B + gcos B) = O (pe?iS), (196)
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which is Eq. (5.5). The vector part of (193) gives
p(pcos B — gsin B) = pmv + - (pe?S) (197)

which is Eq. (5.6).

Moving on to Eq. (5.7). Let’s return to (193) and distribute the derivative
operator.
pe” "% (p —iq) = pmv — 49, (pe’’S)
= pmuv — [ (D,p) e S) + p(8,e™)S + pe9,S ]
= pmv — (Op)eS — p(0e'?)S — pe~POS
= pmw — e~ P (0p) S — pe~#(0iB)S — pe~P0S
= pmw — e~ (0p) S + pie P (0P)S — pe~POS. (198)

Therefore,

p(p—iq) = pme’v — (Op) S + pi(0B)S — pOS
= pmePv —O(pS) +i(AB)pS, (199)

which is Eq. (5.7). The vector part of this last equation gives us (5.8):

pp = pmuvcos -0 (pS) + p(iS) - (OB). (200)

Note: The equation embedded in the text at the bottom of page 16 of the
preprint contains an error. It should read

(1S)-O08=(wAs)-O=vs-0—sv-00. (201)

Now, the trivector part of (199) can be determined by taking the vector part
of its dual. But before I take its dual, I want to put it into a more convenient
form, such as:

p(p—iq) = pme’Pv +iO(psv) +i(0B)pS. (202)
On taking the dual of this last equation gives us

p(ip+q) = pmie’’v — O(psv) — (OB)pS , (203)
and taking the vector part of this gives us

—pg=pmusin +U- (psv) + (0B) - (p5), (204)
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which is Eq. (5.9).
The paper claims that by use of (64) and (145), this last equation can be
transformed into

S-O=s-(O0Av)—v-Os=s-Ov—v-(OAs). (205)

which is Eq. (5.10).

I will begin by using (64) to replace the sin 8 term in (204) and use (145) to
replace the ¢ in the same equation:

—pl—v-(@As)+v-0Os]=—v0- (ps)+0- (psv)+(O8) - (pS).  (206)
Now, for the first simplification.
v-(OAs)—v-Os=p [—vO-(ps) + 0 (psv)] +S-08. (207)
Obviously, we have to get rid of p. So, let’s expand the divergences.
O (ps) ="y - (ps)

= (Oup)* -5+ p7"Ou - s
=s-Up+p0-s. (208)

And,

O (psv) ="y - (ps A v)
= Oupy" - (s Av)
= (Oup)" - (s Nv) + pOuy* - (s A )
= (D) — s) + pOy ("0 — v1's)
=vs-Op—sv-Op+pwd-s—sO-v). (209)
On taking the square-bracket expression of (207), we have that
—vO- (ps)+ 0 (psv) = —v{s-Op+ p0- s}
+{vs-Op—sv-Op+pvd-s—psd-v}
=—vs-Up—povld-s
+{vs-Op—sv-Op+pv0-s—psO-v}
=—sv-Up—psO-v
=—s[v-Op+p0- v]
=—s0-(pv) =0. (210)
Anyway, substituting this back into (207), yields

v-Os=s=v-(0OAs)+S5-08.
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But we also need the following result:

S-08=(S08),
(isvOB )

—(siv0pB )

= —s-(iv0B)y

=—s-(ivAOp). (211)

Now, Eq. (5.11) of the preprint should be written as
v-Os=s=s-(OAv)+s-(ivADpj). (212)

Proving this last equation from (205) is not too hard. We substitute out .S -0
by use of the following identity:

v-Os=(isAv)-08=—s-(GvAOp). (213)

Now, we try to derive Eq. (5.12). We start with Eq. (5.8) and dot it with v:

p-v=mcosf—ptv- [0 (pS)] +v-[(iS) - O8]
=mcosB —p tu- [0 (pisv)] +v-[OF-(iS)]
=mecosfB—p toAnO- (pS) — (v ADOB) - (iS). (214)
But,
p 1[0 (pS)] = p~ v+ [0 (p9)]
p tv-(Op)-S+p0-8S
=p YwAOp)-S+wv-0-8
p tvAOp)-S+ovnad-S. (215)

And,

(vADIP) - (iS) = ((v ADB)(ES))
= (Si(vADB))
=S-(tvn0p). (216)

Hence, we get

p-v=mcosfB—p loAO- (pS) — (vADORB) - (iS)
=mecosfB—p t(vAOp)-S+0OAv-S+S-(ivADp)
=mecosfB—p t(vAOp)-S+S-(OAv+ivAOp)
=mecosfB—p t(vAOp)-S+S-(OAv+ivAOp). (217)
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Now, we try to derive Eq. (5.13). We start with Eq. (5.8) in the following
form:
p=mucosB—p'0- (pS) + (iS) - (OB)
=muvcosf—p [(Op)-S+p0-S]+ (vAs)-(Op)
=muvcosfB—p H(Op)-S—0O-S+(vAs) - (OF). (218)
Rememebring that v - s = 0, we dot this last equation by s~1,
p-st=—s1.0-S+s - (vAs)-(OB)
=—s1-0-S+((wAs)-(OBAsH
=—s1.0-S+(wAs)-(OBAsH
=—st.0.-S—v-083. (219)

Therefore _
f=v-0f=-p-st—s1.0.9, (220)

which is near to Eq. (5.13).

6 Proper Flows

Here, we are interested in the flow of local variables along a streamline. We
begin with the proper angular velocity 2 along streamlines.

Q=2RR=2(v-OR)R = v"Q,,. (221)
First, an identity, s _
Q2 =2RR={(OR)R,v} —Ov, (222)
which is Eq. (6.2). To establish this, we will need our old friend
ba=2a-b—ab. (223)
for vectors a,b. Then
OvR =~"0,vR
=v*(O0uv)R +~"v0,R
= (Ov)R +y*v0, R
= (Ov)R+ (29" - v, — v¥"0u)R
= (v)R+2v-0OR—-vOR. (224)
And one more identity:
(OR)RvR = ORyo = O(vR) . (225)
Hence, _
(OR)RvR = (Ov)R+2v-0OR —vOR. (226)
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(OR)Rv = Ov +2(v-0OR)R — (WOR)R
= Ov+2RR — (vOR)R, (227)
which gives us
2RR = (OR)Rv + v(OR)R — Ouv

={(OR)R,v} — Ow. (228)

But to make progress, we need more than vector identities. So, we write the
Dirac equation (2.15) in the form as

AOWizy0d = mipod + e Ay
=mpv + eApe™. (229)
But we can also write the Dirac Equation as
O3yt = 2([]1/))1;5 =mpv + eApe'’ . (230)
And still more identities to deal with:
200 = 2(01p 2P R)pV /e3P R
= [Olp+ (OB)i + (OR)Rpe” (231)
which is Eq. (6.4). From this we get,
(mpv + eApe’®)S™' = [OInp —i0B + 2(OR)R]pe” (232)
which simplifies to
(mve™ +eA)S™' =Onp—i0B + 2(OR)R. (233)
Thus, we get that
2TR)R = (mve ™ + eA)S™  —Olnp+is, (234)
which compares to Eq. (6.5) of the preprint.

Now, for our next trick, we need to understand that for trivector B and for
vector v
B-v=1(Bv+vB)=3i{B,v}, (235)

Therefore, for (6.6),
1{2(OR)R,v} = [2(OR)R] - v
= [ (mve™ +eA)S™t —Olnp+i0B] - v
= —v-Olnp+v-(@08)+v-[ (mve # +eA)S7
=—v-Olnp4ov-(@08)+v- (mve ™ +eA)S™1,  (236)
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since v- S~ = 0.
But how did we move the v on the right side to the left side? Sample
calculation:

(i08) -v = { (D) )2
= —((i0B)o)
— —(0(0B)i)2
— (vi(08) )
=v- (iDB) . (237)

~
2

So, using (236) into (222), yields Eq. (6.7):
Q=-0Av+wv-G08)+v- (mvcosf+eA)S™. (238)

Hint: After substitution, keep only the bivector parts, as ) is a bivector.
And from this, we get Egs. (6.8)—(6.10):

0=Q-v=v-(OAv), (239a)
§=Q-s=s-(O0Av)+s-[v-(O50)] (239Db)
S=13[9,8]=1[S,0Av]+1[S,v- (OBi)], (239c¢)

Equation (182) can be re-expressed as
OAP=0, (240)
which is Eq. (6.11). Hence, P must be the gradient of some function, say x:
P =0y, (241)

where x is the phase of the Dirac wave function. Going over to the classical
limit, 5 = 0, sinf8 = 0, and cos 8 = +1. Then, (199) becomes by taking the
vector part:

p=tmuv, (242)

where we have set 8 = 0, and set
(O(pS) )1 = O+ (pS) = 0. (243)

Now, from (164) we can write

P=p+eA, (244)
and then
p=0x—eA. (245)
Therefore (242) becomes
p=+mv=0x—eA, (246)
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which is (6.13), where the 4, — signs refer to different charges. Squaring this
gives the Hamilton-Jacobi equation (6.14):

(Ox —eA)? =m?, (247)

since v? = 1. Anyway, x can be solved for if A is known.
On taking the curl of (246), we have that

TmOANv=0A0x—-edNA=—-e0ONA, (248)

since 0 A 0 = 0 as an identity. Continuing, we also know that A A = F, the
electromagnetic tensor. Thus, the proper angular velocity is

Q=-OAv=+<F, (249)
m

which is Eq. (6.16) and which obtains the Lorentz force. Or, more generally,

e

R=+—FR, (250)

2m

which is Eq. (6.17).
Now for the dervation. From (222) we get
R=1QR. (251)

-2

Now we just substitute in from (249).

We next take (5.7):
p(p—iq) = pmve’ —O(pS) +i(OP)pS, (252)
and put it in the form (6.18):
(P+iq) —eA =muve " — "W, (253)
and W, is given by (158).

So, we begin with (252) and use that p = P — e A, to get
p[ (P +qi) —eA] = pmuvet® — O (pS) +i(0B)pS. (254)
Then, divide through by p:
(P4 qi) —eA=muve® —p~10(pS) +i(0B)S. (255)
But

O(pS) =~"0u(pS)
=7"[(0up)S) + p0, S|
= (Op)S + pOS. (256)
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Hence,

p~'O(pS) = p~ ' (Op)S+0S

=(Onp)S+0OS. (257)
So, (255) becomes
(P +qi) —eA =muve’® — (Olnp)S —0OS +i(0B)S . (258)
Now,
YW, =~"[0,5S + S0, Inp+id,B)]
=-085—-+"S(0,Inp+19,3)
=-05—4"(0, Inp+1i0,58)S
= —08 — (O p)S +i08S. (259)
Finally, 4
(P4 qi) — eA = mve’® — "W, . (260)

First, we take the gradient of this last equation, to get
(OP +0qi) — e0A =m[Ov —i(DB)v]e”? + 4479, W, , (261)
which is (6.19). Then, on taking the bivector part, we get

m[OAv—i(@B) Av]e ™ = —eF + 9, WH + 3[v* Ay”,0,W, ]
+@OAP+0OAq1), (262)

which is (6.20).
As a partial calculation, let’s find the bivector part of v*+¥9,W,. For
starters,
VA O Wy = O Wy, + A NV OW, (263)

Then

(Y90, Wy )2 =" O Wy + (" ANy 0, W) )2
= 9WH + L[ AV, 0,W,]. (264)

Let’s recast (181) into the form of (6.21):
OAP+0OAqi = 39"9718,8,0,5]S7, (265)
from whence we from (262) that

m[OAv—i(OB) Av]e ™ = —eF 4+ 9, W" + LAY, 0, W, ]
+ 19#4[8,8,0,58157", (266)
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And some more massaging:
.
OAnv—i(0p)Av= —%615 +m oW + L[y A, 0, W, ]
+177"10,8,0,515 " }e'?

= ET L D, 4 [ A, 0,0, ]
+ 144719,8,8,8]1S 71} (267)
get that
O W, —0,W,, + 1[0,8,0,5]87" = 3[W,, W, ]S, (268)

which is (6.22). (Note: On the RHS of (265), I get a factor of a half rather than
of a fourth.)
Let’s try this.

OW, —0,W, = (8,5)(W, — 9,8)S™ — (0,8) (W, —9,5)S™ . (269)
Hence,
Wy, =0, W, = [(0uS)W, = (8,8) W, ]S = =[(9,5)(0,5) — (8,9)(8,.9) 1S
=1[0,8,0,59187". (270)

This can be easily rewritten as (268).

Combining these last results (262) finally becomes
D/\v+iv/\D,8:—%Few+C, (271)

where 4
mC = e (9, W + 1[y*4", [W,, W, ]S71]). (272)

Now for a short lemma.
twANOB = (ivAOpB)2
= (twlp ),
= —(vilB)s
=—v-(¢0P). (273)

Next, we shoot for (6.25). Substituting (271) into (238), we get
Q=-0OAv+wv-(i08) +v-(mvcosB +ed)S™?
=[ivADOB + E e - Cl+wv-(0B)+v- (mvcosf+eAd)S™?
m

CFef —Ctu- (mvcosfB+eA)S™t, (274)
m
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which is Eq. (6.25).
Eq. (6.26) follows immediately from 0 = Q - v:

@zE(Fem)-v—i—v-C.
m
With a little more effort, we get Eq. (6.27):
. e i
S:%[R%SeB]Jr%[S,C’].
To prove this, we begin with 25 = [, S].
[Q,8] = [ SFe® — C+v- (mvcos B+ ed)S™1, 5]
m
:EFSGZ-B*OS#*U'(M’UCOSﬂ#*GA)
m
- {%SFeiﬁ —SCH+wv-(mvcosf+eA)}
23 Bl E _
C eS|~ (C,8]
= [F, 8¢+ (8,01,
m

Hence,

We now introduce the local magnetic moment suggests that
e .
U= U Sethb
m

and
lelh

2m

el
lpl="—IS5]=
m

From (274) and (128) we get
v-(p+ed)+iv-qg+85=0QS = %FewS—CS—&—mcosB—i—ev-A.
After cancelling the ev - A term from both sides, we get
v-op+iv-g+ S =08 = %F@ZﬂSfC’Squcosﬂ.
The pseudoscalar part of (282) gives

ivoq= %<Feiﬁs>4—0As.
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Hence, we get (6.31)
v-q= (=) (Fe’S) —Cns]
e .
=i S— —(Fe®)nS
i[OS - < (Fe®) n 5]
= ~(F?)-(sA0)+C- (v As), (284)
where we used that S = isv =is A v. From the scalar part of (282) is (6.32)

p~v:mcosﬂ+(£56i5)~F—C~S. (285)
m

p-vz%(FemS)—C’-S—chosﬁ
=%<SeiﬁF>—C'S+mCOSﬂ
:<%eiBS>2~F—C~S+mcosﬁ

:(%elﬂg).F—C-S—i—mcosﬁ. (286)

Things to know to produce Eq. (6.33): Start with (168),

N/LV = N/L Y = P(U/\’Y;L) : Wl/

=p(LAY) - 0uS — psu0,p. (3.22)

O- (ps) = —mpsin 3. (2.18)

O (ps)=s-Op+p0-s. (287)
D/\v+iv/\D5:—%Feiﬂ+C. (6.23)

It will a bit of effort to prove Eq. (3.22). We'll start with (158):

W, = (pe®)71,(pe™S). (288)
So,
P A7) Wy = p(oAv) - [(pe?) 0, (pe™S)]
=pw A7) - [(pe'®) (D, p) e’ S )+05 (€)S} + 0,51
=p(WAY) 0,8+ p(v Av) - L(pe™) (80 p)eS) + p, (e7) S} ]
=p(AY) - 0uS +p(wAY) - [p7 (80 p) S + (8,8)iS]
=pWAY) 0SS +pw Ay [p~ Y0p)S — (8.8)sv]
= (0 A) - 0S — p(v A ) [(BuB)s A v, (289)
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where we used that (v A~,)-p~1(d,p)S =0 because v - S = 0. Continuing, we
have that

p(WAYL) Wy =pwAy)- 0,5 — ps,0,8. (290)
Next, we have one of the harder equations to establish, Eq. (6.33):
Ny =pS-(BOAO) = (BvAD) - (pS) — ps-LO,0 - (0,8)0 - ps
= —pS-d, (%Felﬁ - C) +p(B,0 AOB) - (iS)
= (GyvnD) - (pS) —m0, cos B
- —p(S : aV% (Fe'® — C) + (8,0 Ay™) - W,, +m, cos 5) . (291)

Proof following.

Lemma: v A, - S = 0. This uses the fact that v- 5 = 0.

Definition: Given a differentiable operator D and differentiable functions F'
and G, then we are said to “contraflux” the derivatives of F' and G, if we replace
the expression (DF)G by D(FG) — F(DGQ).

Let’s see how far we can get on this one. To begin with, we have that
DNy = 0" p(0 A ) - 0,5 — ps,,5]. (202)

Let’s differentiate the terms separately. Careful observation of the first two
terms on the RHS of the first line of (291) show that we need to bring the
p and the S together. Sounds like a plan! It looks like we should begin by
contrafluxing the derivative 0, over the dot product of the two bivectors. Thus,

Mp(vAyu) - 0uST=0"[pdu{(v Avu) St —p{o(v Ay}t 5]
= —0"[{0u (v Ay)} - (pS)]
= —{0,((0"v) Ayp)} - (pS) —{0u(v Ay 0")} - (pS)
= —(pS) {0, ((0"v) ANyu)} — {0, (v AT} - (pS)
= (pS) -{0.,(OAv)} = (GvAD) - (pS)
=pS-(OAIv)— (G,oAD0)-(pS). (293)

And that gives us the first two terms of the first line of (291). Then,

0" [~ps,0,8] = —(9")5,0,8 — pd] 5,0,5]

(s-0p)0uB —p[(O- )08+ s-00,03]
(0uB)[(s-Op)+p(E-5)]—ps-TO,P6

(0,8)0- (ps) — ps-00LB. (294)

7
7]
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And that gives us the third and fourth terms of the first line of (291).
Now that we have

O*Nyy =pS- (@A) — (0,vA0) - (pS) —ps-00,6—(0,6)0-ps, (295)
can we get the next line of (291)? That is, (6.33)
Ny =pS-(OANOw) — (OpvAD) - (pS) —ps-00,6— (0,8)0- ps
— »S-0, (L Feis _ (i
= —pS-0, (m Fe c) +p(BwADR) - (iS)
— (0,oAO) - (pS) —ma, cos B. (296)
Let’s begin with the first term and use (271) in the form
OAv=—2Fef +C—ivADB, (297)
m
So,
pS-(OAND)=pS-0,(OANV)
=pS-0, (fiFeiB +C’fiv/\|]ﬁ)
m
= pS-9, (fiFeiﬂ + c) —pS-8, (iv ADIB)
m
= —5S-0, (L FeP_C) - (i
Y (mFe c) p(@, o NDIB) - (iS).  (298)

However, the text show a plus sign in front of the second term. Anyway, we've
one more step:

S0, (tvAOp) = (50, ivADOP))
= ((i8)9, (v ATIB))
= (9o A0P) (i5))
= (G,vAOP) - (iS). (299)
The last thing I have to show is that
—ps-00,6—(0,6)0- ps =—md, cos 3. (300)

Using (64), I can show that

—(0,8)0: ps = (0, B)mpsin B
=—mp0d,cos . (301)

Finish this!!
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I repeat Eq. (2.26)

0, TH = 0u(pv*'p) + O N*
= Ou(pv")p + pv"0up + 0, N*
=pv-Op+0,N*
= pp + O N"
=peF-v=pf. (302)

Now we go to Eq. (6.34). We begin with Eq. (2.26):
0.T" = pp+ 0NV =peF-v=pf, (303)

from which we get that
p=eF-v—p 9,N". (304)

To proceed, I make that assumption that

OuN* = "Ny, = 09" Ny = 770" Ny, - (305)

Now we go to Eq. (6.35).
OuM" = pi[S,0Av]+ 3[vAT,pS]
e .
%[F,ESe’B} +pi[8,C1+ Lo Ayt W], (6.35)

We begin with Eq. (2.34)

pS’-i—pp/\v:'yH/\N”—aMM“, (2.34)
and apply (271):
DAv+iUAD,B:—%Fei5+C’. (306)
From (2.10)
Ty = pvup + Ny, (307)
we get
" = pot'p+ NH | (308)
Then,
Y NTH =pvAp+vy, AN, (309)
Eq. (2.20) is
YEANT, =T, A" =i(OAps) = -0 (ips) . (310)
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Then, using (2.34) from a half-dozen equations ago:
OuM" = —pS+ 4, AN* +pvAp
=—pS+y, ANT"
=0-(ips) — pS
=0 (ips) + tp[OAv,S]+ L[v- (OBi), pS], (311)

where we used (239c). Now,

[vAD,pS]=vA0(pS) — (pS)v AT
vO(pS) =v-0O(pS) + v AO(pS)
= (v-0p)S +pS+vAD(pS). (312)

(v0(pS) )2 = v A (O (pS)). (313)

(@) AOp)] - S+ p[(B,v) AT -S. (314)
Now, we finally return to (305): [This equation will be needed soon.]
O*N, =~+"[5- 8“(%Fei5 = C)+ (v AY*) - Wy, + md,, cos 3]
= 'y“[(?uS(%FeiB —C)-F+4"(0uv AY) - W, + my* 9, cos B .
(315)
O"N,,
—p

So, now we're ready for (6.34):

:D(%Few—C)-$+Dv/\7”-Wu+mDC055~ (316)

p=eF -v— p_lc'?“NH
=elF - v+ %D(Few) -5 -0C-F+0vAy" - W, +mOcos B.  (317)
According to the text, we substitute this last result into (2.34)
pS’-i—pp/\v:%/\N“—(')HM”, (2.34)
and use (6.27) to get Eq. (6.36):

PUAD+ Y ANF =, ATH = L[v Ay, W, ]. (6.36)
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7 Weyssenhoff Motion
There’s not much for me to do in this short section, except to derive Eq. (7.5)
p=v(p-v+8)=(p-vv+v-S. (7.5)

from Eq. (7.4).

S=vAp. (7.4)
Okay,

U'U/\p:U'S
p:vv~p+v-5
=(p-v)v+v-8
=v(p-v+8). (318)

since v A S = 0.

8 Interpretation of the Dirac Theory

No math in this section.
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9 Appendix A: Matrix form of the Dirac
Theory

We start off with ~p as a hermitian matrix and ~;(i = 1,2,3) anti-hermitian
matrices. We will see both i and 5 used to represent ypvy1v273. However, in

what follows, I will use ¢ = v/—1 to be the complex unit imaginary.
We need to find a “spinor” u that satisfies both

You=u and Yoy1u=iu, (319)

where u is a 4 X 1 matrix. We have suitable matrix solutions for these equation
in the assignments

1 10 0 O i 0 0 0

0 01 0 O 0 —i 0 O
““lol T 1o o -1 o T |o 0 i o0 (320)

0 00 0 -1 0 0 0 —i

The other Dirac matrices are shown on the next page.
Given a GA version of the 9 as
1.

) =p'/%e2"R, (321)

(where R and thus ¢ are even multivectors), we can arrive at the proper matrix
version by the association

U =1u, (322)
which is Eq. (A3).

In the geometric algebra, we can write the Dirac Equation for an electron in
an EM field as

hO¢yey1 — e A = mypyo, (323)
which is Eq. (A4), and which corrects an error in the preprint version. Imagining
this last equation as a matrix form and multiplying through on the right by wu,
we get

hOYyey1u — e AYu = mpyou . (324)

Using the equations in (319) for this:

hiDyu — e AYpu = mypu . (325)
And finally,
hiOW — e AU = mU. (326)
Or, alternatively,
(hid — e A)T = mV. (327)

In coordinates, this becomes

Y (hi0y, —eA,)¥ =mV. (328)
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These last two equations constitute Eq. (A5) in the preprint.
The following is how to take the hermitian conjugate of an arbitrary gamma
matrix 7,:
v = Y0770, (329)

which is Eq. (A6). More generally, let M be any multivector with real coeffi-
cients, then Eq. (A7) is
Mt =M~ (330)

where the tilde mean to take the reversion operator.
To obtain Eq. (A8), we need to know that i — 75, 5 = 75 and that p'/? =
p'/2. Hence, from (321), we get

J = pH/2e R, (331)
since v5 commutes with all even multivectors. Thus,
¥t =090 = 7001/2€%i6§70 = PUZ(ﬂ_éZﬂVOEVO = PUZﬁ_%wRTa (332)
which is Eq. (A9).

Before continuing, let’s demonstrate the Dirac matrices with lower indices:

0 0 0 -1 0 0 0 =4 0 0 -1 0
10 0 -1 0 0 0 — 0 0 0 0 1
M=lo1 0o of> 7o = o of> 7|1 0 o0 o0
10 0 0 i 0 0 O 0 -1 0 O
(333)
And, of course, there’s also v (in the matrix algebra):
0 010
. 0 0 01
V=T = 1 o 0 o (334)
0 1 00
And now, for combinations:
1 0 00 1 0 00
01 00 0 0 0O
1 _ 11— _
0 0 0O 0 0 0O
Hence,
1 0 0O 1 0 00 1 0 00
, 01 00 0 00O 0 00O
i)t =) =14 5 o oflo o1 0[]0 0 0 0
0 00O 0 0 0O 0 0 0O
(336)

40



It seems like we have gone to a whole lot of trouble to get a matrix with a single
nozero entry in it. But, as we shall see, this is a special matrix indeed, for

1 1 0 0 O
0 0 0 0 0
T _

wul = | (1 00 0)= 00 0 0 (337)

0 0 0 0 O
Thus
wut = F(1+7)(1 —ivam)

= 1(1+70 —i2m —iv072m) (338)

which is Eq. (A10), and a little more.
With U =yt then we can get started on Eq. (A11).

VUi = Yuulpiyg = uulrgeTyg  (since 42 =1)
= Yuutyo(ovir0) = Yu(ulre)d
= Yu(you) P
= ’(/JUUT’(Z.

At this point, we make a substitution using (338) and that vyy271 = Y573 to
continue Eq. (A11):

Tty = Yuuly
= Ly[1+ 70 — irem + iv072n I
= 1 [V + ¥y0v — ivyanth — ihys YY) ]
= %p[eﬂ75+v7ieﬁ75§+i'y5§}, (339)
where _
ip = pels (340)
and _
Yy = pv, (341)
and 9
vy = pe’ Rivoy R = pe'? =S, (342)
and _ _
1Y Y3 = Y5 PY3Y = 1755 . (343)

For an arbitrary matrix M
Uiy MU = Tr (TyoMTT) = Tr (MITT,)
= i{MW{/;+ VYo — e — iysys |}
= (M) + (M) — i { Mypyomit)) — i Mipyoremd) ], (344)
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which is Eq. (A12). From the text: “The trace of a matrix in the Dirac matrix
algebra is equal to four times the scalar part of the corresponding multivector
in the space-time algebra. ..”

Let A, B,C, D be square matrices. Then, the trace of a product is invariant
under cyclic permutation of the factors:

Tr (ABCD) = Tr (DABC) = Tr (CDAB) = Tr (BCDA).  (345)

Hence,
Tr (Ul M) = Tr (MUTiy) . (346)
Given
mi1 MMmi2 M1z Mig
Ma1 Moz M2 may
M = 3 : (347)
m31 M32 M33 1M34
Mgl MMyg2 Mgz Mgy
then
mii mi2 mi3 miy4
ma1 ma2 ma3 mayg
—m31 —M32 —M33 —M34
—M41  —My2  —Tyg3  —TNy4

YoM = (348)

W gy, = Tr (3, 2T T0) = § T (4700)
= (1078 ) = (Yut0¥)
=p{WV) =PV V= pUpu. (349)
The Tetrode tensor in matrix form is Eq. (A15):

ih
Ty = E(WT’VO’YM(?V\II — 0,V 07, W) — eA, Uy, U, (350)

which correctly adds a subscript to the vector A.
The first term of this last equation becomes

i\Iﬁ'YO’YMaV\IJ =Tr ('Vﬂ(au\l/)\IIT'YO)

=0 (Va0 [ 1 + 70 — 7271 — iv573 |9)

= i (70,00 ) + i {1,000 ) + (140012 ) + (140 ivs Y3t )
= i<%3:ﬂ/)701;> + <%3u¢i75731;> ) (351)

which is Eq. (A16). The two terms that dropped out had only terms with an
odd number of vector factors in their products, which can only produce vectors
and trivectors in this algebra.

The second term of (350) becomes

10, U907, 0 = i (7, 070000 ) + (1075730, 0)
= i(%ﬁﬂﬂﬂ% - <7;Lau¢7573i> . (352)
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Putting this altogether into (350), we get Eq. (A18):

Ty = P70 Pv573Y ) — epvp Ay, (353)

10 Appendix B: Divergence of J,

I repeat the error correction the preprint made concerning Ref. [1]: Equation
(5) should be

O-J,=—2msinfes - J, +2ei(es Neg AN J, N A). (354)

So, now we derive this last equation by use of the Dirac equation. The Dirac
equation (2.15) is given as

hD(ﬁi’}/g’Y() = mw’}/() + €Aw . (355)

By multiplying this on the right by i%wg'yu{/zv, we get

R(OY)iv370 170737 = MUY0i0 137t + e AYioY3 Y.t - (356)
Or,
R(OY) 7 = —imyzy, — ei AYyoyavu
= —impe"’ Rysy, R — epi ARyoy37, R

= —impePege, — epiAegese, . (357)

What about this p that I got that didn’t appear in the preprint?
So, what is J,?

Ty = Pyt (358)

And we have the identity
a-J,=(0J,). (359)

Hence,

O-J, = (0J,) = (Clpy,dh)
= (070 ) + (Oy ) - (360)

We can transform the second term of this into a copy of the first term:

VOt ) = (V000

VU0 )™ = ( (B yuhy”)

V@) ) = { (7 )Yt )

(@) - (361)

(CIpyth)

(
(
(
(
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Hence, (360) becomes B
O Ju = 2((0)9) - (362)

Now, we borrow from (357) and use that e’ = cos + isin3 and that
e, = J, and separate out the two terms:

9 .
a-J,= 7ﬁ<impelﬁegeﬂ +epAiepese,, )

9 2
— fﬁ@mp(cosﬁ +isin B)esJ, ) — fep

2m 2e .
5P sin f(es ) — gﬂ(AleoezaJﬁ

(Aiegesd, )

2m . 2e .
= ?psmﬂegu]#— fp(zeong#Af (363)
The selector of the last term of this can be rewritten as

<i6063J#> = <Z‘A/\€o/\63/\JH> = <’L'€3/\€0/\J#/\A>. (364)

11 Conclusion

Well, it’s nearly half a century since this Hestenes paper was published, and its
had too little attention from the physics community in my opinion. Most of
the time that Hestenes converted some standard form of math or physics into
geometric algebra or geometric calculus, he’d get a cleaner formalism and often
a widened domain of applicability. But for the Dirac equation, conversion is
altogether different, for it entails a completely new paradigm in which the Dirac
equation and the wave function are replaced by equations of conserved quanti-
tites for observables and their constituitive relations. It has also introduced a
new parameter [, which is still somewhat mysterious.

I can see how that is a lot to accept for your typical conservative physics
professor, who would rather play it safe. But I'm now retired and ready to sink
my teeth into this subject.
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