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This revised paper demonstrates what can be accomplished toward making high school 

geometry easier by using the method of symmetry analysis. This analysis uses: 

  

• constructions to create highly symmetric figures in which the original geometric 

figure from a particular problem can be embedded and then easily solved, 

  

• transformations of the figure into equivalent but more highly symmetrized figures 

  

• advanced analytic tools built out of geometrical constructions, and 

  

• a systematic set of specific heuristics. 

 

The diagram in Fig. 1 was found in a standard high school geometry textbook: ADCB is a 

parallelogram. The problem also included an algebraic relation given as something to 
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verify. We, however, will use our modern computer skills to help us formulate the 

conjecture and then to go on to verifying the conjecture algebraically. The only hint we 

will give at this point is that the conjecture involves the lengths of line segments lying on 

segment TD . 

 

 
Figure 1. ADCB is a parallelogram. 

 

Our first thought to solving this problem is to use the wedge technology that we have 

cultivated so well. To that end we redraw the figure as in Fig. 2. 

 

 
 

Figure 2. We redraw the figure to leverage what we already 

know: the Wedge technology. 

 

Now, it’s obvious that DTC forms a wedge, and we will be using this wedge later. But 

for now we will add the ray W with vertex at point R and point it off to the right to our 

current figure. The reason we are doing this is because of the hint we were given about 

the conjecture concerning lengths of line segment lying on segment TD . We will use the 

point R as a centrum (i.e., a center point about which two or more concentric circles will 

be drawn) to project some of the points off the TD  segment. This we do to the points T, 

S, and D. Just which point or points we will project off the line we will determine after 

the new construction. So, let’s go ahead a draw the projection circles and display the 

result in Fig. 3. 
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Figure 3. The points T, S, D manifesting their “circles of influence” by 

being circularly projected about centrum R into the wedge 

 

From Fig. 3 we cull out just the part of interest at this moment, which is displayed in 

Figure 4. 

 
Figure 4. A subfigure from Fig. 3 showing the “magic” 

secondary wedge we have constructed so easily. 

 

 

 

The most obvious conjecture to make about Fig. 4 is that  S D  is parallel to DT   

(denoted as  S D || DT  ). If that’s true, then we can conjecture the following algebraic 

relation 

 

RS

RD

'

'
 = 

RD

RT
, 

 

Where we used that RT’ = RT.  And, since RS’ = RS, RD’ = RD, then  
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(RD)2 = RS • RT.                                                   (1) 

 

Thus, we have arrived at the starting equation given to the student in the textbook. So 

how should we proceed? 

 

Unfortunately, we don’t have an obvious means to prove that  S D || DT  , so we can 

proceed to solve the problem in the usual way. The first thing we must do is to return to 

Fig. 2 and do some more creative interpretation and drawing. 

 

First, we interpret DTC as a wedge, meaning that we are on the lookout for any sets of 

parallel lines that we can manufacture in the wedge. We can sum up the Wedge’s power 

with this quatrain: 

 

There’s secret power in the Wedge I draw, 

       by what I mustn’t tell! 

But all the other lines I draw 

       are always parallel! 

 

With the interpretation of  DTC as a wedge we can immediately appreciate that AB  is 

parallel to DC , from the given information. But what about AC ? Should we mate it with 

a parallel line segment through the wedge? We should indeed do so AUTOMATICALLY 

if the line segment or its mate are relevant to the problem at hand. In our case, AC  

divides TD  at R and this is probably very relevant to establishing Eqn. (1). Now, we 

draw a line segment through D parallel to AC , hitting line AC  at E. Thus, we arrive at 

Fig. 5, where the tick marks show the line segment congruences. 

 

 

Figure 5. The point E is derived by construction so that DE  || AC . 

The congruencies indicated between AD  and TE should be 

interpreted as referring to complete segments lying between AD  

and TE , such as AB = DC.  

 

We are finally ready now to begin writing down algebraic equations, but we must do so 

conservatively to avoid being swamped by redundant or useless information. Remember 

that every set of parallel lines through a wedge generates a chained proportion. For 

example, consider the generic wedge in Fig. 6. 
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Figure 6. A generic wedge to demonstrate chained proportions. 

Here AD  || BC . In a generic wedge one segment has one length that is strictly 

less than and another that is strictly greater than the lengths of all other segments 

on the inclined and level lines. In our case this is the segment OD for the shortest 

and OB for the longest. Of the four points A, B, C, D, then, D and B are called the 

“extreme” points, leaving points A and C as the “mean” points of the four.  

 

In Fig. 6 AD  || BC , from which we know that OAD  OBC. And from this we get the 

following chained proportions: 

 

OA

OD
 = 

OB

OC
 = 

AB

DC
  = 

AD

BC
 ,                                        (2) 

 

where the first three ratios are from line segments on the inclined and level lines. The last 

ratio comes from considering the two segments AD  and BC  “through the wedge.” Note 

also that the number of chained equations gets larger for each additional parallel line 

placed through the wedge. 

 

The next part of the analysis concerns what to call all other relations on line segments 

besides those of proportions. One type occurs when a line segment is subdivided into 

parts, from which we form an equation by equating the total to the sum of its parts, such 

as in Fig. 6: 

 

OB = OA + AB.                                             (3) 

 

This type of equation, together with inequalities that can be formed on line segments, we 

refer to as constitutive relations. 

 

Alright, we are now ready to formulate a plan of culling information from Fig. 5.  

 

1)  We have two pairs of parallel line segments, generating two independent sets of 

chained proportions. We will write these down, omitting the probably unnecessary 

ratios from the segments through the wedge. 

 

2)  We will choose from each chained proportion a “simple” equation relating the most 

relevant line segments from each chain. 

 

3)  From this pair of simple equations we will eliminate the most irrelevant line segment. 

If two or more seem just as irrelevant, we can randomly choose any one of them. 
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4)  We will bring only those constitutive relations that are needed. 

 

SOLUTION: 

 

STEP 1): 

TS

TB
 = 

TD

TC
 = 

SD

BC
 ,                                                 (4) 

 

TR

TC
 = 

TD

TE
 = 

RD

CE
 .                                                 (5) 

 

STEP 2): 

TD

TC
 = 

SD

BC
 ,                                                    (6) 

 

TR

TC
 = 

RD

CE
 .                                                    (7) 

 

STEP 3): Of all the line segments represented in Eqn’s (6) and (7), TC  looks as 

irrelevant to establishing Eqn (1) as imaginable. So, we will solve (6) and (7) each for TC 

and then use the transitive property of equality. 

 

 TC  = 
TD BC

SD


 ,                                                   (8) 

 

TC  = 
TR CE

RD


 .                                                   (9) 

 

Therefore, 

 

TD BC

SD


 = 

TR CE

RD


 .                                             (10) 

 

But BC = CE, yielding 

 

TD

SD
 = 

TR

RD
 .                                                 (11) 

 

There are a couple observations to make at this point. The first is that the wisdom to mate 

AC  with DE  is quite clear now. The second is that Eqn. (11) seems just as important as 

Eqn. (1). 
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STEP 4): Now we bring in any needed constitutive relations. Keep in mind an important 

lemma 

 

a c

b d

+

+
 = 

c

d
         if and only if          

a

b
 = 

c

d
 .                        (12) 

 

Since 

      TD = TR + RD,                                             (13) 

and 

SD = SR + RD.                                             (14) 

 

Substituting these into the left-hand side of (11) gives 

 

TR RD

RD SR

+

+
 = 

TR

RD
.                                            (15) 

 

Then matching (15) to (12) gives us 

TR

RD
 = 

RD

SR
.                                                 (16) 

 

Finally, since SR = RS, and then by cross multiplying, we get Eqn. (1). 

 

It’s fair to say that the ability to conjecture Eqn. (1) without the aid of the wedge 

construction to produce Fig. 4 is highly unlikely for most of us. The question is why is 

the splitting of the line TD  so useful a trick. I think it’s the nature of the original 

problem, which was to find a relationship among line segments that all lie on the same 

line. There’s not much geometry going on within a single line. Or perhaps there’s a lot of 

‘geometry’ happening on TD  but it’s hidden from sight. The wedge construction used in 

Fig. 4 just helps to bring this hidden geometry to the light of day where we can easily see 

it. 

 

Our wedge construction to arrive at Fig. 4 is metaphorically like “splitting” the line TD  

to produce a wedge, taking some points on the new line and leaving others on the old.  

This trick of splitting an overburdened line to relieve it of so many line segments or 

points is so important that it deserves its own quatrain to commemorate it: 

 

When we split the Atom 

       some thought that really fine. 

But no one ever dared believe 

       we could split the Real Line! 

 

 

Certainly, the wedge construction is a tool to help us mentally cope with hidden or 

complicated structure.  
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Much importance has been made of efficient heuristics in this paper because so few 

textbooks deal with it in a systematic way, if at all. The biggest problem with finding 

information from Fig. 5, say, as an example, is that if you write down all possible 

equations that could be written from it, you’d have maybe 50% of the resulting set of 

relations as redundant information. With so much redundant information and lacking a 

logical plan to deal with it, the chances of “going in circles” while groping for a solution 

is quite high. 

 

Now for our second problem.  
 

In the figure below, AN  is perpendicular to BC  and BAC is a right angle. Show that 

 

(BA)2 = BC • BN .                                                   (17) 

 

 

Figure 7. In BAC, AN  is perpendicular to BC  and BAC is a right angle. 
 

To proceed, of course we embed the figure in a wedge and then add two points by 

circularly projecting points A and N to get: 

 

 

 Figure 8. A and N are projected and N A' '  is drawn. 
 

On just the visual image of lines N A' '  and AC  we could conjecture that they are 

parallel, and thus that Equation (17) follows immediately. Now we could prove that they 

are parallel by proving that BAC  BN’A’. But we have a more accessible result to 

prove: ABN   A’BN’. Well, since B is a centrum we have that BN = BN’, BA = BA’, 
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and it’s obvious that ABN = A’BN’, thus by the SAS postulate: ABN   A’BN’. And 

now that we know these two triangles are congruent, we can equate corresponding angles 

in them, namely, BN’A’  = BNA =  90. Therefore, BN’A’  = BAC, establishing that 

N A' '  || AC . And we are finished. 

 

Although we did not need a wedge to prove this result, it did facilitate the proof not to 

mention facilitating the conjecturing of the theorem itself. The way to remove the 

perceived mysteriousness of geometry from the minds of highschool students is to 

facilitate them in conjecturing the very theorems they must then prove. 

 

Another Wedge tool. 

 
Thus far, we have stressed the usefulness of using parallel lines through the wedge, but 

now we will investigate another useful construction within it. Consider the following 

figure: 

 

 
 

Figure 9. By circularly projecting points A and N from the level line to the 

slanted line we have created a number of angular relations to be sorted out. 

 

By the SAS postulate we can easily see that NBA’  N’BA. So we can also conclude 

that 1 = 2, and 3 = 4. We shall refer to this as Wedge Theorem 3. 

 

 

Now for preparation for future problems: The calculus of 

Supplementary & Complementary forms 

 
Now for a new and convenient calculus of complementary and supplementary forms. 

Assume that a is any real number, then we define a  by  

 

  a     − a                                                   (18a) 

 

which simply defines a symbol to represent the generalized supplement of angle a in 

radian measure. From (18a) we get the following results: 

a  + a  =                                                      (18b) 
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a  =  a                                                         (18c) 

b  = a     if and only if   b  = a                                      (18d) 

( a  + b ) − a b+  =                                           (18e) 

( a  + b )  = 2 − (a + b)                                        (18f) 

a b+  =  −( a b+ )                                             (18g) 

a b  = a   b                                                  (18h) 

a  = a      if and only if      a = /2                                    (18i) 

 

The proof of the equations in (18) are easy and left for the reader. Obviously, the 

relations are useful for straight angles but also for triangles. For example, let a, b, c be the 

interior angles of any triangle, then 

 

 a + b + c =          implies that        a   =  b + c                       (19) 

 

So, what are the sums of the exterior angles of the same triangle? Well, each exterior 

angle is the supplement of its adjacent interior angle, so 

 

a  + b  + c  = 3 − (a + b + c) = 2                               (20) 

 

Although the relation a   =  b + c is equivalent to the Exterior Angle formula for a 

triangle, it was derived from a more general equation. 

 

Of course, we have a similar notation for complementary angles.  

 

  ~a    /2 − a                                                   (21a) 

 

which simply defines a symbol to represent the generalized complement of angle a. From 

(21a) we get the following results: 

a  + ~a  =  /2                                                    (21b) 
~~a  =  a                                                         (21c) 

b  = ~a     if and only if   
~
b  = a                                      (21d) 

( ~a  + 
~
b ) =  /2  + (a +  b)  ~                                         (21e) 

~a  + 
~
b  =  a b+                                                 (21f) 

a  + a  =  2(b + c)      if and only if      c = 
~
b                          (21g) 

a  + a  =  2(b + ~c )      if and only if      c = b                         (21h) 

 
Now (21g,h) may look like just a convoluted ways to state the equivalent of (21b), but 

they do occur frequently enough to justify their presence in the list. 

 

A word about notation is needed here: I will from here on distinguish between an angle 

and its measure. So, if 1 represents angle 1, then m1 represents its measure, a real 

number. 
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Now for our third problem. 

 
This next problem is easy but also illustrative. Consider the figure below.  

 

 
 

Figure 10. An arbitrary quadrilateral. 

 
With respect to the angles depicted in Fig. 10, show that m1 + m2 = m3 + m4. 

Using our calculus of supplementary forms we get 

 

                                   m1 + m2 + m 3  + m 4  = 2                                       (22) 

 

Now , since m 3  =  − m3, and m 4 =  − m4, then we get 

 
m1 + m2 = m3 + m4                                              (22) 

 

 

Another tool. 

 
The wedge is strong in dealing with parallel lines, but there are plenty of situations that 

present nonparallel lines for consideration. Of course, nonparallel lines intersect in the 

plane and thus form a wedge, but this may not be useful in all problems. When 

nonparallel lines cut through a wedge they don’t form similar triangles but they do form 

relatable triangles. Consider the form below which I dub a “butterfly.” 

 

In Fig. 11 we see the full wedge cut by two nonparallel lines forming a sort of “butterfly” 

configuration. Now the two triangles formed are not usually similar, but they do carry an 

important relation between them. At the vertex b which joins the two wings of the 

butterfly are so-called vertical angles, which are equal. So, their supplements are equal. 
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Figure 11. The “Butterfly” form. 

 

And from this we get the Butterfly Theorem: 

 

m1 + m2 = m3 + m4                                              (23) 

 

From this we have an easy corollary, called the Similar Butterfly Corollary: If any 

nonvertical angle of one wing of a butterfly is equal to any nonvertical angle of the other 

wing, then the remaining corresponding nonvertical angles are equal, and the two wings 

are similar by AAA Postulate. 

 

Now we draw a line parallel to ae  through the right wing of the butterfly to get 

 

 
Figure 12. The “folded butterfly” bdcbe’a’. 

 
We see in a’dce’ of Fig. 12 the same quadrilateral as in Fig. 10. Were this transformation 

of Fig. 11 to get Fig. 12 done with the aid of appropriate geometry software (as a 

continuous motion of line ae  to line a e' ' ), the resulting proof could easily be considered 

as a “visual proof.” 

 

 

Yet another tool. 
 

Anyone who has taken highschool geometry knows that the circle is a figure capable of 

generating very complicated problems to solve. But I have in mind another interpretation 



13 

of the circle: It is a very powerful tool in helping to solve problems. The simplest feature 

to demonstrate for the circle is its ability to effortlessly generate isosceles triangles. Just 

take any two points on the circle that aren’t collinear with the center of the circle and 

you’ve got an isosceles triangle, as in Fig. 13. An important symmetry of an isosceles 

triangle is that its base angles are equal in measure. 

 

 
Fig. 13. Isosceles triangles made easy. m1 = m2. 

 

Now for our fourth problem.  
 

Using the isosceles triangles of the circle we will prove the following important theorem 

about inscribed angles in a circle: The measure of an inscribed angle intercepting a minor 

arc in a circle is equal to half the measure of the central angle intercepting the same arc 

of the circle (the inscribed angle on the major arc).  

 
Figure 14. Central angle at C intercepts the same minor 

arc as the inscribed angle at D. 

 

In Fig. 15, we have added the line segment CD , making a total of three isosceles 

triangles from which to get relationships. Fortunately, about all we need do now is to use 

the Butterfly Theorem at butterfly vertex b, from which we get:  
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 + ( + m2) = m2 +   

 

 
 

Figure 15. Combining “circular isosceles triangles” 

and “butterflies” can lead to compact proofs! 

 

And this quickly simplifies to  = 
1

2
 Henceforth this theorem will be referred to as the 

Circular (Minor) Half-Angle Theorem (or CHAT). “Minor” because the inscribed angle is 

on the minor arc between points A and B. 

 

Our fifth problem puts it all together! 

 
If you thought that the synthesis of our tools on the last problem was effective, you’ll 

love this problem. It synthesizes the wedge, circular isosceles triangles, and CHAT tools 

all into one proof. With that hint, maybe you can solve this next problem on your own 

with these tools. 

 

 
Figure 16. The “before” state. 
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In Fig. 16 is a triangle ABC in which the line segment CD  has been placed such that it 

divides C into two equal angles. Show that 

 

BD

DA
 = 

CB

CA
.                                                 (24) 

 

OK, where do we start. Remember: Proportions suggest a wedge with parallel lines going 

through it. So, A could serve as the vertex of wedge CAB, and CD  can serve as one line 

through it. But now we have to decide on a line parallel to CD  through the wedge. This 

other line should contain the point B, but that solves only half the decision at his point. 

We can either draw a line through B which is parallel to CD , or else we can draw a line 

through B which satisfies some other convenient condition and then show that this other 

line through B is parallel to CD , which is what we will do this time. 

 

 
Figure 17. The “after” state⎯the “symmetrized” state. 

 

Our strategy is to draw a circle of radius CB at point C, and then to extend AC  until it 

meets the circle at point F. We label the point of intersection of the circle with segment 

AC  as E. Now by the CHAT theorem  =  (Why?). Therefore CD  || FB  (Why?). 

Therefore 

FC

CA
 = 

BD

DA
.                                                 (25) 

But FC = CB, so 

CB

CA
 = 

BD

DA
,                                                (26) 

 

as we needed to show. 
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An obvious corollary to this theorem occurs when in Fig. 16, AC = BC (that is, when 

ABC is isosceles). Then ACD is congruent to BCD  (by postulate SAS), and 1) they 

are both right triangles and 2) CD  ⊥ AB . 

 

Our sixth problem also puts it all together! 
 

In Fig. 18, we have a tangent line to a circle and an arbitrary secant line through the 

circle. Point C on PA  is the circular projection of T about P. Formulate and prove a 

conjecture about the lengths of line segments on PA . 

 

 
Figure 18. Initial state. 

 

We have seen this kind of problem before. Let’s guess that there exists some proportion 

to be cast here. Probably using P as a centrum to circularly project A onto PT  and then 

finding relevant parallel lines through the wedge APT will give us good conjecture. 

 

 
Figure 19. Initial state has been transformed into a conjecture state. 
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If we conjecture that BT  || CA'  then we can also conjecture (similar to previous 

problems we have done) that  

 

(PT)2 = PB • PA                                                 (26)     

 

One way to prove BT  || CA'  is to show that mBTP =  mCA’P . And here is the point 

at which one can easily go around in circles trying to prove this last equality from within 

the wedge alone. We have in fact culled out nearly all the information we can get from 

the wedge already. There’s two more pieces of information to use, though. Notice that 

points B, T, and A are on the circle. Remember that a circle has an enormous amount of 

symmetry to use for finding relationships. If we did not already have a circle to contain 

these three points, we should have to construct it for its problem-solving ability. 

 

Now, as we know, PAT  PA’C, so mPAT = mPA’C. Therefore, it is sufficient to 

show that mBTP = mPAT to show that BT  || CA' . This is the first bit of information 

we needed. The second bit is that, since PT  is tangent to the circle, then it is 

perpendicular to OT , where O is the center of the circle. Now with this information we 

can drop points P, A’, and C from further consideration, and build isosceles triangles 

inside the circle. This is depicted in Fig. 20. Notice that mOTB = m
~
1 . 

 

 
 

Figure 20. The figure is recast again into “solution” state. 

 

As you can see, we have two butterflies at the point b, but we won’t be needing either of 

them this time. We need CHAT applied to BAT to conclude that m3 = 2. Because 

BOT is isosceles, we know that m 3  = 2m
~
1 . On adding these two equations 

together we get 

m3 + m 3  = 2( + m
~
1 )                                              (27) 

 

Applying (21h) to (27) we can conclude that  = m1, which was to be shown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
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Our seventh problem champions the Butterfly tool 
 

From Fig. 21 we are to show that mAEB + mADB = 2m AFB. 

 

 
 

Figure 21. Is this a hard problem? 

 

To make the solution easier we can re-label angles as in Fig. 22 below. In terms of our 

new labeling of angles our ShowThat equation becomes m4 + 5  = 2m3. 

 

 
 

Figure 22. The angles are re-labeled. 

 

In Fig. 22, all the b’s are vertices of butterflies, and again we are in trouble of using too 

many butterflies to extract the information we need. We could use butterflies that may 

not lead to useful information or we may use too many butterflies, in which case we end 

up with redundant information. Let’s choose just two for a start. From b1 we get that 

 

m1 + m4  = m3 + m2.                                          (28) 

 

From b2 (the big butterfly) we get that 

 

2m1 + m4  = m5 + 2m2.                                             (29) 

 

Now subtracting (29) from twice times (28) yields 
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m4 + m5  = 2m3,                                                   (30) 

 

which is what we were to show. 
 

 

 

 

We have learned three lessons so far: The first is that the tools we use and the 

constructions we make may transform the original problem into a simpler problem and 

the required algebra simpler. The second is that the constructions we have made it easier 

to formulate a plan of culling out the most relevant information from among the 

irrelevant information. Without such a plan it is easy to get overwhelmed by irrelevant 

and/or redundant information. And the third observation is that our constructions aid in 

formulating the conjectures that we then go on to prove rigorously. 

 

The reason that some of the problems are difficult in their original state is because they 

are in some sense mere fragments of a larger highly symmetrical structure. This suggests 

two dichotomous strategies for solving these kinds of geometry problems: 

 

• Either embed or transform the original figure into a more highly structured figure in 

which the symmetries make the finishing-off algebra next to trivial, or 

  

• Attempt to use brute-force algebra from the very beginning to solve the problem 

without embedding or transforming the original figure into a more highly 

symmetrized figure. 

 

It’s time now to throw in a bunch of solved problems as example of the use of the tools 

and methodology advocated above 

 

 

Our eighth problem champions the Folded Butterfly tool 

 
In Fig. 23 show that  =  

 

 
Figure 23. A folded butterfly. 

 

From the Folded Butterfly Theorem,  +  =  +  so  =  
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Our ninth problem uses the calculus of supplementary forms 

 

A light ray enters a wedge of mirrors and travels the path indicated in Fig. 24. Show that 

 =  

 
Figure 24. A light ray in a wedge. 

 

From the Second Fundamental Theorem of the triangle we know that 

 

a  = m1 + m2                                                 (31) 

 

and using the Exterior Angle formula we know that  

 

  =  2 1  + 2 2                                                 (32)      

                                                                     =  2  −  (2m1 + 2m2) 

                                                                     =  2[  −  (m1 + m2)]                                                                      

                                                                     =  2  

 

where we used (18f). 

 

Our tenth problem also uses supplementary forms 

 
In Fig. 25 is a triangle with two congruent angles and with a line segment bisecting the 

third angle. Show that m3 = /2. We have two simple equations immediately from the 

figure: m3 = m1 + m2 and m 3 = m1 + m2. From these we conclude that m3 

= m 3, which, from (18i), leads us to conclude that m3 = /2. 

 

 
Figure 25. 
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Our eleventh problem is one of the important ones in H.S. geometry 

 
Our problem here is to show that the angle bisectors of a triangle meet in a point. In Fig. 

26 ABC has already had two of its interior angle bisected by AF at A and by CE  at 

C. These two line segments meet at G. Point D is the extension of line segment BG  to 

CA . 

 
Figure 26. 

From Problem Five we learned that the bisector of an interior angle of a triangle divides 

the opposite side of the triangle in the same ratio as the ratio of the other two sides of the 

triangle. Well, we’ve got two angle bisectors here and we could write down some 

equations relating lines segments on the big triangle ABC, but we have a much better 

approach by noticing that CDB  and ADB  also both share this half-angle relation and 

they are joined so-to-speak at BD , from which we can write: 

 

DC

BC
 = 

DG

GB
 =  

DA

BA
                                          (33) 

Therefore 

DC

DA
 = 

BC

BA
                                                 (34) 

 

which is the condition that BD  is the angle bisector at B. 

 

 

Our twelfth problem uses the Butterfly symmetry again. 

 
In Fig. 27 we depict two chords of a circle that intersect within the circle. Show that 

 

 PB • AP = PC • PD                                              (35) 
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Figure 27. Two inscribed angles forming a butterfly. 

 

The first thing to note is that (35) is just a “flattened” version of the proportion 

 

PB

PD
 = 

PC

AP
                                                 (36) 

 

OK, so let’s do some “backward” or “would-be” reasoning at this point: Equation (36) 

would be true if APC  DPB. And that similarity relation would hold if all three pairs 

of corresponding angles were equal. Now we already know that mA = mD because 

they both intercept the same minor arc. And we know therefore by the Butterfly 

Similarity Corollary that APC  DPB. And we are done. 

 

Our thirteenth problem investigates another wedge ⎯ to use similar 

triangles or maps is the question. 

 

 
Figure 28.  
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In Fig. 28 is an isosceles triangle ABC. Parallel line segments are indicated by arrows in 

the standard way. AF = 4 and FD = 6. What is DB? 

 

Let’s solve this problem with maps! The horizontal parallel lines connect points of equal 

distance from point A. Let M be the map that takes F to E, then M = (6+4)/4 = 5/2. Map 

M connects points F and C through E and D (what’s called a “pathway through the 

wedge” ⎯ just follow the arrows!), yielding M2(AF) = M2(4) = (5/2)2 4 = 25 = AC = AB. 

Now, DB = AB − AD = 15. 

 

 

Our fourteenth problem is a “challenging” variant on the last problem. 
 

This problem would be challenging using similar triangles, but it is conceptually trivial 

using linear maps. In Fig. 29 we have another level of nested “similar” triangle. The point 

H has been added, with AH = m1 and HF = m2. What is BD? 

 

 
Figure 29. In terms of linear maps this is trivial! 

 

Let M be the linear map that takes H to G, then M(m1) = m1 + m2  and generally, Mn (x) = 

(m1 + m2)
n x/ m1

n . 

 

So, 

                                   BD = BA − DA = CA − EA 

                                         = M3(m1) − M2(m1) 

 = (m1 + m2)
3/ m1

2 − (m1 + m2)
2/ m1 = m2(m1 + m2)

2/ m1
2        (37) 

 

Done! 
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A nonstandard tool: Taking Inverses! 

 
A wedge is a multiplication tool! We can use it to recursively multiply or to take 

multiplicative inverses. Consider Fig. 30a below. What we want is a sort of inverse in the 

ordinary sense of multiplication, that is (AB)-1 = x/AB, where, of course, AB is the length 

of segment AB . When x = 1 then (AB)-1 is the ordinary multiplicative inverse of AB. 

 

Fig. 30a.  How to take the inverse of  AB ? 

 

But as the problem stands at this point, it is not possible to find such an inverse. We must 

first either define a unit length along the inclined line of the wedge or we must define 

some other point to act as a sort of “fulcrum” for taking inverses, and this is what we will 

do. To that end we can place any other point on line AB , which we have done in Fig. 

30b. For convenience we have put the point C between A and B, but this was not 

necessary. Now our search is to find the point D such that AD = x/AB.  

 

 
Fig. 30b.  A fulcrum C has been chosen. 

 

Now we use A as a centrum to circularly project points C and B on the inclined line to 

points C and B, respectively, on the level line. This brings us to Fig. 30c. 

 

 
Fig. 30c. A is a centrum to circularly project points C and B on the 

inclined line to points C and B, respectively, on the level line. 
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Our last step is to use parallel lines (you knew that they had to into the act somehow) to 

make similar triangles inside the wedge. This is depicted if Fig. 30d, which shows where 

the point D is located. 

 

 
Fig. 30d. D is a generalized inverse to the point B with respect to point C. 

 

Comparing the similar triangles, we get: 

 

AD

AC 
  =  

AC

AB 
             

AD

AC
  =  

AC

AB
                  AD  =  

( )AC

AB

2

.          (38) 

 

Viewed from the perspective of a linear map from the inclined line to the level line, the 

map that takes the point C ( AC ) to B ( AB  ), has a generalized inverse that takes the 

point C ( AC  ) to D ( AD ). Either way you look at it, when AC is set equal to unity then 

AD  = 1/AB. 

 

 

Lemma on Interior Inverses: 

 

Introduce into Fig. 30d three parallel line segments connecting D, C, and B with unique 

points on the line AB.  

 
Figure 30e. Inverses in the wedge. 
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Also, let the line segments connecting points A, D, C, and B satisfy Equation (38). (See 

Fig. 30e.) Then  

        DE  =  
( )CF

BG

2

                                                  (39) 

 

or, in words: DE is the generalized inverse of BG with respect to CF. 

 

 

Proof: 

 

Since parallel lines cutting through a wedge create mutually similar triangle of some ratio 

of proportion say , then the following is true. 

 

 =  
AD

DE
  =  

AC

CF
  =  

AB

BG
                                           (40) 

Therefore 

AD

AC
  =  

AC

AB
                 









DE

CF
  =  









CF

BG
                           (41) 

 

which, on canceling  ’s yields 

 

DE

CF
  =  

CF

BG
           DE  =  

( )CF

BG

2

.                           (42) 

 

 

 

Our fifteenth problem returns to conjecture formulation 

 

 
Figure 31a. How to use generalized inverses directly. 

 

In Fig. 31 we have a situation that depicts what looks like two (different) wedges in 

roughly opposite orientations. The segments AX , CZ , and BY  are mutually parallel. 

This problem can be found in Posamentier & Salkind on pages 10 and 74. They simply 

state an equation to be proved, but here we want to conjecture the equation first.  
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Therefore: conjecture by trial and error a constitutive relation among 1/AX, 1/CZ, and 

1/BY. Note that the segments involved are inside the wedges XBA and BAY, which is new 

to our analysis. Hint: use the inverse-construction tools to find the inverses of X and Y 

with respect to fulcrum C, and then conjecture a relation among those generalized inverse 

inverses and CZ. 

 

 
Figure 31b. First, we do wedge XBA. 

 

 

Let’s start with wedge XBA. In it we invert point X with respect to fulcrum C about 

centrum B. First, we circularly project C to C. Then we connect XC with a line segment. 

Then we draw a line parallel to XC through C, forming the line segment (or line) CM. 

Now we circularly project M to XB, meeting it at a point we label X. Finally, we draw a 

line through X parallel to XA, meeting AB in the point A. This brings us to the state 

found in Fig. 31b. 

 

Now we do essentially the same process in wedge BAY to invert point Y with respect to 

fulcrum C about centrum A. The result is shown in Fig. 31c. 

 

 
Figure 31c. Point Y has been inverted to point Y in wedge BAY. 

 

Now all we have to do is to put AX and BY into ABC and make a conjecture. The 

result is displayed in Fig. 31d. 
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Figure 31d. What constitutive conjecture about this figure can we make? 

 

Our last task is to make a constitutive conjecture that relates1/AX, 1/CZ, and 1/BY. First, 

we can make the plausible conjecture that 

 

BY  + AX  =  CZ                                                (43) 

 

Then we replace BY and AX by the explicit generalized inverses in terms of BY and AX 

to get 

 

( )CZ

BY

2

  +  
( )CZ

AX

2

  =   CZ.                                        (44) 

 

Finally, we divide (44) through by (CZ)2 to get 

 

1

BY
  +  

1

AX
  =  

1

CZ
.                                           (45) 

 

Posamentier & Salkind present a relatively short proof of (45) in their book. Since their 

proof is shorter than this conjecturing, why bother with conjecturing? The whole point of 

conjecturing, besides the fact that it is more fun than just proving relationships, is that it 

gets us out of the artificial world of formal problems and gets us into a realm much more  

 

We shall present our own proof of this relation after building better tools for pattern 

matching.  

 

Theorem: Parallel-Winged Butterfly. 
 

We have already seen he power of using the Butterfly for pattern-matching, but now we 

will investigate a particular type of Butterfly that has a great deal more symmetry than an 

arbitrary one. Consider the case of a Butterfly construction where the edges of the 

“wings” of the Butterfly are parallel to each other, as depicted in Fig. 32. 
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Figure 32. The Parallel-Winged Butterfly forms two similar triangles. 

 

In Fig. 32 bae  bcd. From which we get that  

 

ab

eb
  =  

cb

db
,                                                   (46a) 

ab

eb
  =  

cb

db
.                                                   (46b) 

 

Now we are ready to prove the relation in Equation (45). Let’s begin with a suitable 

constitutive equation, based on Fig. 31a, 

 

YA   =  YC  +  CA .                                              (47) 

 

Clearly we should divide (47) through by the quantity YB, first because we want a YB = 

BY in the denominator of one of the terms to begin the process of molding our present 

equation into the ShowThat equation, and second because we need some artifice to get 

rid of YA. After the division we get 

 

YA

BY
  =  

YC

BY
  +  

CA

BY
.                                          (48) 

 

 

From wedge YAB we get that YA/BY = CA/CZ. And from butterfly YCAXB we get that 

YC/BY = CA/AX. On substituting these two results into (48) we get 

 

CA

CZ
  =  

CA

AX
  +  

CA

BY
.                                          (49) 

 

And finally, by dividing (49) by CA we get that 

 

1

CZ
  =  

1

AX
  +  

1

BY
 .                                         (50) 

 

Henceforth we shall refer to this result as the Two-Peaks Theorem. 



30 

 

 

Is there a method to our madness?  

 

Let’s take a moment to reflect on the progress we have made so far. We started with the 

simple but fundamental symmetry that when parallel lines are cut by a transversal the 

corresponding angles generated are congruent. Then we formed the wedge and utilized 

the symmetries of similar triangles to get generally powerful results. Next, we identified 

the symmetries of the Butterfly configuration, and then the stronger but less frequent 

needed Parallel-Winged Butterfly. Lastly, we identified the Two-Peaks Theorem. The 

progression listed here is obviously from the simple to the complex. The simpler ones are 

the more general but the least efficient. The more complex ones are the more powerful 

but less general tools for pattern-matching. 

 

You see, our search for a proof of some relation that bears on a particular figure is like a 

cryptologist’s search for sets of keys or patterns that can be made or matched against to 

decode an encrypted message. Well, a problem in geometry is like an encrypted message. 

If we can find the right pattern to match the figure against, we can, together with a good 

set of heuristics, quickly find the appropriate relations to solve the problem. Thus, the 

problem-solving strategy proposed here is to develop a good set of heuristic and a large 

bag of pattern-matching tools to help reveal the symmetry, structure, and algebraic 

relations in any given figure. 

 

To attempt a convincing demonstration of both our pattern-matching tools and our 

general methodology we will now re-solve the first problem by using the strong 

symmetries of the Parallel-Winged Butterfly tool as a pattern-matching tool. Refer once 

more to Fig. 1. Note the two Parallel-Winged Butterflies DARCT and DCRAS. From the 

first we get that 

 

RD

RT
 = 

RA

RC
                                                     (51a) 

and from the second we get that 

RA

RC
 = 

RS

RD
.                                                 (51b) 

 

 

Then, on eliminating RA/RC between these two equations, we get Equation (1) for almost 

no effort at all. If we don’t build-up evermore complex pattern-matching tools to work 

with then we must always begin with the most primitive tools, which is obviously 

inefficient. 
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