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Abstract

In this paper, I present some properties of the trace function, which operates on square matrices.
A basic knowledge matrices is assumed, and, in particular, that of the determinant of a matrix.

1 Introduction

This article will begin with the easy identities about the trace function and then progress to evermore
difficult ones. But first, we need to define what is meant by the trace function of a square matrix.

Definition: In a square matrix A, the main diagonal starts at the upper left element a11 and
proceeds down the diagonal to the lower right ann. See Fig. 1.

Definition: The elements of A not on the Main Diagonal are said to be ‘off-diagonal’ elements.

Definition: A square matrix is said to be ‘diagonal’ if its off-diagonal elements are all zero. Obvi-
ously, the zero matrix is trivially diagonal.

Definition: The symbol that will be used for the trace function in this paper is Tr (). Thus, for
the n× n matrix A,

Tr (A) ≡ a11 + a22 + · · ·+ ann , (1)

that is, the trace is the sum of the components on the main diagonal.

Figure 1. Let A be an n× n matrix. The ‘diagonal elements’ of A are those which

begin at the top left and go in order to the bottom right. As depicted in the figure

above, they are the elements a11, a22, . . . , ann . The squiggly curves represent all

the off-diagonal elements I’m ignoring for the moment.

Definition: The ordered set on the elements on the Main Diagonal of matrix A are presented in
the convenient form diag(A) = (a11, a22, . . . , ann). (By the way, if the rows and columns start their
counting at zero instead of at unity then diag(A) = (a00, a11, a22, . . . , an−1n−1).) One advantage of
introducing the diag() function is that it allows us to write down much more compact mathemtical
expressions.
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The diag() function is peculiar in that it can go the other way as well. Above, we put into its
argument a matrix and received back the vector of its diagonal elements as its components. This
time, we’ll input a vector/array and output a diagonal matrix. Thus, for

v = v1, v2, · · · , vn , (2)

then

diag(v) =


v1

v2
. . .

vn

 , (3)

where, this time, the voided entries are all zeros.
If we take the composition of diag functions, diag(diag(A)), we get back a diagonal matrix D,

having on its main diagonal the diagonal elements of A. Thus, for

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , (4)

then D = diag(diag(A)) = diag2(A), and

D =


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

 . (5)

One last comment before we begin the identities. What kind of numbers can we allow as the
components of the square matrices of interest to us? Well, for many purposes, we can allow them
to be just elements of a ring, meaning that they won’t need to have inverses. However, for the more
advances requirements, we’ll see later on, the nonzero elements will need inverses. So, let’s just keep
things simple and assume that the components are either from the real or complex numbers.

Definition: An n× n matrix whose trace is zero is said to be traceless. Now, in a traceless matrix
the components on the main diagonal need not all be zero, but if they aren’t, they need to add up
to zero.

Definition: We define the Sum() function on a vector/linear-array of numbers. Let v be a
vector/linear-array with n components v1, v2, . . . , vn. Then

Sum(v) ≡ v1 + v2 + · · ·+ vn . (6)

The following lemma
Tr (AB) ̸= Tr (A)Tr (B) , (7)

is easy to prove, by way of providing a counterexample. Let

A =

[
1 1
0 −1

]
, B =

[
1 0
1 1

]
then AB =

[
2 1
−1 −1

]
. (8)

Then, Tr (A)Tr (B) = 0 · 2 = 0, but Tr (AB) = 1.
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2 Simple identities of the Trace function

a) Let In be the n× n identity matrix. Then Tr (In) = n. (Obvious.)

b) Let At stand for the transpose of A. Then Tr (At) = Tr (A). Since the transpose operation leaves
the elements on the Main Diagonal fixed, this proof is obvious.

c) Let α be a scalar. Then Tr (αA) = αTr (A). To multiply a matrix by a scalar, one means that
each element of the matrix is multiplied by the scalar. Thus,

diag(αA) = (αa11, αa22, . . . , αann)

= α(a11, a22, . . . , ann) . (9)

Now, Tr (αA) = Tr (diag(αA)) = Sum(diag(αA)) = αa11 +αa22 + · · ·+αann = α(a11 + a22 + · · ·+
ann). And, αTr (A) = αSum(diag(A)) = α(a11 + a22 + · · ·+ ann). Hence, Tr (αA) = αTr (A).

d) Let A,B be n × n matrices. Then Tr (A + B) = Tr (A) + Tr (B). We begin with the fact that
matrices are added together component-wise, so that the i, jth component of (A+B)ij = Aij +Bij .
Therefore the ith component on the main diagonal of this sum is Aii +Bii. Therefore,

Tr (A+B) =

n∑
i=1

(Aii +Bii) . (10)

But,

Tr (A) + Tr (B) =

n∑
i=1

Aii +

n∑
i=1

Bii =

n∑
i=1

(Aii +Bii) . (11)

Hence, Tr (A+B) = Tr (A) + Tr (B). Corollary: Tr (A−B) = Tr (A)− Tr (B).

e) Let A,B be n×n matrices. Then Tr (AB) = Tr (BA). The proof of this is not too difficult. The
method is to look at the diagonal elements of both AB and BA by multiplying them together in
indice form and then show that diag(AB) = diag(BA). It’s trivial from there.

f) Let [A,B ] be the commutator of A and B, where [A,B ] ≡ AB−BA. Show that Tr ([A,B ]) = 0.
This result follows trivially as a corollary to the last lemma.

g) Let A1, A2, . . . , Ak be k n× n matrices. Then

Tr (A1A2 · · ·Ak) = Tr (A2 · · ·AkA1) . (12)

In essence, we’ve cyclically permuted the left-most factor to the right side of the product. The proof
of this involves induction. We need a base case to prove, which we can accept as proved by use of
e), thus: Tr (A1A2) = Tr (A2A1). Next, use the inductive hypothesis to assume that (12) is true
for k factors and then prove that the relation (12) is true for k → k+ 1. Anticipating future needs,
let’s define B = A2 · · ·AkAk+1, then

Tr (A1A2 · · ·AkAk+1) = Tr (A1(A2 · · ·AkAk+1))

= Tr (A1B)

= Tr (BA1)

= Tr (A2 · · ·AkAk+1A1) . (13)

Since the relation held for case k + 1, the relation is assumed to be true for all k ≥ 2. Now, we
have shown that we can move the leftmost matrix all the way to the right, but we can also move
the rightmost matrix all the way to the left by similar arguments.
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Lemma 1 (for the next theorem)

Let A,D,P be n×n matrices, such that D is a diagonal matrix. Suppose further that P is invertible
and that

A = P−1DP . (14)

Then Tr (A) = Tr (D). We will use cyclic permutation of matrices in this proof.

Proof:
Tr (A) = Tr (P−1DP ) = Tr (DPP−1) = Tr (DI) = Tr (D) . (15)

3 The Matrix Diagonalization Theorem

Now I want to employ a technique that can be found in Gilbert Strang’s linear algebra textbook,
Linear Algebra for Everyone,1 pages 215–216.

Suppose A is an n× n matrix with n mutually orthonormal eigenvectors xi, each having corre-
sponding eigenvalue λi. Then the following standard equation must be true for k ∈ [ 1, 2, . . . , n ]:

Axk = λkxk . (16)

Now, since the RHS is a column vector, the LHS is too. Thus, we can make a new n × n matrix
with n columns Axi, in which case, (16) generalizes to

[Ax1 Ax2 . . . Axn ] = [λ1x1 λ2x2 . . . λnxn ] . (17)

However, this last equation is equivalent to

A [x1 x2 . . . xn ] = [λ1x1 λ2x2 . . . λnxn ] . (18)

And this can be written more compactly as

AX = X Λ . (19)

where
X ≡ [x1 x2 . . . xn ] and Λ ≡ diag(λ1, λ2, . . . , λn) . (20)

Thus, X is an n × n matrix and Λ is an n × n diagonal matrix. Now, it’s well-known that X is
invertible, hence we can solve for Λ:

Λ = X−1AX . (21)

Therefore, we know from the last lemma that Tr (A) = Tr (Λ), which is equal to the sum of the
eigenvalues of A. Pretty neat!

Lemma 2 (some results without proof)

We need some result from the theory of determinants, such as, the fact that the determinant of
a diagonal matrix is the product of the components on the main diagonal.

Let A,B be n× n matrices, then it is known that

det(AB) = det(A) det(B) . (22)

By induction, we can show that the determinant of a product of matrices is equal to the product
of the determinant of the individual matrices, or

det(A1A2 · · ·Ak) = det(A1) det(A2) · · · det(Ak) . (23)

Now, if A is invertible, A−1A = I, then

det(A−1A) = det(A−1) det(A) = det(I) = 1 . (24)

1G. Strang, Linear Algebra for Everyone, Wellesley-Cambridge Press, MA, USA (2020).
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4 An advanced identity involving the Trace function

The next identity may look hard but it really isn’t, so long as you understand how to take the
exponential of a variable using the Taylor series. So, let’s get that part out of the way now.

eX ≡
∞∑
i=0

Xk

k!
. (25)

More commonly, the variable X is a real or complex number, but we will allow it to be an n × n
matrix (why not?). Does (25) even make sense as a matrix equation? Let’s see. The kth term on
the RHS is

Xk

k!
. (26)

So, this tell us to multiply X by itself k times. That’s a sensical matrix operation. Then we divide
that result by k!. That’s just dividing a matrix by a real number, so that makes sense. But how
do we add together an infinite number of n × n matrices? We do that componentwise, and that
also makes sense. Technically, we have to concern ourselves with whether or not each infinite sum
converges, but we won’t deal with that here.

So, here’s our next theorem. Let A be an n× n diagonalizable matrix such that

A = P−1DP , (27)

where D is a diagonal matrix. Then,

det etX = etTr (A) . (28)

The t factor is just a scalar number. On the LHS we have the determinant of an n × n matrix,
which is just a scalar function of t. Since the trace of A is a scalar, etTr (A) is also a scalar function
of the variable t. Now,

etA =

∞∑
k=0

(tA)k

k!

=

∞∑
k=0

tk
(P−1DP )k

k!

= P−1
[ ∞∑
k=0

tk
Dk

k!

]
P . (29)

Wait! Does that makes sense to pull P−1 and P to the outsides? Well, (P−1DP )k = P−1DkP , so
it does. (It’s easy to prove.)

Now we take the determinant of both sides.
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det etA = det
(
P−1

[ ∞∑
k=0

tk
Dk

k!

]
P
)

= det(P−1) det
[ ∞∑
k=0

tk
Dk

k!

]
det(P )

= det
[ ∞∑
k=0

tk
Dk

k!

]
= det

[
diag

( ∞∑
k=0

tk
dk11
k!

,

∞∑
k=0

tk
dk22
k!

, . . . ,

∞∑
k=0

tk
dknn
k!

)]
= det

[
diag

(
etd11 , etd22 , . . . , etdnn

)]
= etd11etd22 · · · etdnn = et(d11+d22+···+dnn)

= etTr (D)

= etTr (A) . (30)

And this is all I have for traces in this paper, though I expect to have a follow-up paper soon
about the applications of the trace function as it is used in the Dirac theory.
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