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Physical concepts are free creations of the human mind, and
are not, however it may seem, uniquely determined

by the external world.
— Albert Einstein

The YouTube video is found at:

Source: https://www.youtube.com/watch?v=JxCDIBqtf18

Title: Solving A Viewer Suggested Problem | Problem 238

Presenter: aplusbi

1 The Problem

Given the relations z = a+ bi and

(a+ bi)2 = b+ ia , (1)

find the values of z. (Skip down to the solution if you wish.)

2 Basics of Complex Numbers

Typically, we find a generic complex number denoted by the letter z, but one is
free to choose other letters, as well. So, if z is a complex number, in general it
has both real and imaginary parts:

z = a+ bi , (2)

where a, b are real components of basis vectors 1, i. But they are also expressed
as, respectively, the ‘real’ and ‘imaginary’ components of z.

Complex conjugation of complex number z is an operation that leaves real
numbers alone but replaces the unit imaginary i with its negative, i.e., −i. The
symbols most often used to represent complex conjugation are the ∗ and the
overbar. I’ll usually use the overbar. Thus, the complex conjugate of z in (2) is

z = a− bi . (3)
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Obviously, the complex conjugation of a pure real number has no effect.
A funny thing happens when we multiply a complex number by its conjugate:

zz = (a+ bi)(a− bi) = a2 + b2 . (4)

So, zz is zero if and only if z = 0, otherwise, it’s a positive real number.
Another funny thing happens when we add a complex number and its con-

jugate: we also get a real number. Let’s see.

z + z = (a+ bi) + (a− bi) = 2a . (5)

Why do we care about this? Because sometimes we need to map complex
numbers into the real numbers to get information on the complex numbers.
This problem will show you that.

I’m not going to prove this here, but every complex number can be expressed
in exponential (or polar) form:

z = a+ bi =
√
a2 + b2eiθ = (zz)1/2eiθ = reiθ , (6)

where we can think of r as the length of the complex numbers z or z .

r ≡ (zz)1/2 or r2 = zz = |z |2 . (7)

So, it will be good to know all this stuff in this section before you attempt
to follow my solutions to these complex variables problems.

By the way, the complex numbers are what’s called a field, so they can
be added, subtracted, multiplied, and divided by each other (except you can’t
divide by zero, as usual). And, therefore, you can apply the quadratic formula
to them! (Yay!)

Lemma 1: If a complex number z is equal to its own conjugate z = z , it’s real.

Lemma 2: If a complex number z is complex conjugated twice then there’s no
change: z = z.

Lemma 3: The complex conjugated of a product or a sum is the product or
sum of the complex conjugates: z1z2 = z1z2 and z1 + z2 = z1 + z2.

Lemma 4: If s, t ∈ R and z = s+ ti then

iz = t+ si . (8)

3 Basics of Complex Numbers with Trig
Functions

Let’s begin with the Euler relations:

cos θ + i sin θ = eiθ , (9a)

cos θ − i sin θ = eiθ , (9b)
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Next, let’s invert them:

cos θ =
1

2
(eiθ + eiθ) , (10a)

sin θ =
1

2i
(eiθ − eiθ) , (10b)

where, in the above cases, I used the usually understood real variable θ, but
that can be replaced by the complex variable z. In fact, soon we will do so.

Okay, how to represent tan z by exponentials?

tan z =
sin z

cos z
=

1

i

eiz − e−iz

eiz + e−iz
. (11)

4 The Solution

If you put the Given relation (1) into Wolfram Alpha, what you get out isn’t
very useful. (Apparently because it fails to evaluate the real and imaginary
parts separately.) So, let’s use Lemma 4 (8) to recast the Given into this

z2 = iz . (12)

If you enter that into Wolfram Alpha1, you’ll get back

z = 0, z = −i, z = −
√
3

2
+

i

2
, z =

√
3

2
+

i

2
. (13)

So, assuming that Wolfram Alpha is correct, my job is to reproduce it. We can
start with the obvious trivial solution of z = 0.

Now, if we multiply (12) by its own complex conjugate we get this:

(zz)2 = (iz)(−iz) , (14)

or
r4 = r2 . (15)

But r has to be a nonnegative real number, hence r = 0, 1. Thus, when z ̸= 0,
z is a point on the unit circle in the complex plane. (From this point on, we
ignore the trivial case z = 0.) Thus,

z = eiθ , (16)

which is consistent with the answers Wolfram Alpha gave us.
Let’s return to (12) and this time multiply through by z:

z3 = izz = i = eiπ/2 . (17)

Next, we take its cube root.

z = eiπ/6e2iπn/3, (n = 0, 1, 2) . (18)

Let’s investigate each case for various n.
1Use the form ‘z2 = iz∗, solve for z’.
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Case n = 0:

z = eiπ/6 =

√
3

2
+

i

2
. (19)

Case n = 1:

z = eiπ/6e2iπ/3 = e5iπ/6 = −
√
3

2
+

i

2
. (20)

Case n = 2:
z = eiπ/6e4iπ/3 = e9iπ/6 = e3iπ/2 = −i . (21)
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