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1 The Problem

Given the relations z = a+ bi = reiθ and

z14 = z , (1)

find the values of z. (Skip down to the solution if you wish.)

2 Basics of Complex Numbers

Typically, we find a generic complex number denoted by the letter z, but one is
free to choose other letters, as well. So, if z is a complex number, in general it
has both real and imaginary parts:

z = a+ bi , (2)

where a, b are real components of basis vectors 1, i. But they are also expressed
as, respectively, the ‘real’ and ‘imaginary’ components of z.

Complex conjugation of complex number z is an operation that leaves real
numbers alone but replaces the unit imaginary i with its negative, i.e., −i. The
symbols most often used to represent complex conjugation are the ∗ and the
overbar. I’ll usually use the overbar. Thus, the complex conjugate of z in (2) is

z = a− bi . (3)

Obviously, the complex conjugation of a pure real number has no effect.
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A funny thing happens when we multiply a complex number by its conjugate:

zz = (a+ bi)(a− bi) = a2 + b2 . (4)

So, zz is zero if and only if z = 0, otherwise, it’s a positive real number.
Another funny thing happens when we add a complex number and its con-

jugate: we also get a real number. Let’s see.

z + z = (a+ bi) + (a− bi) = 2a . (5)

Why do we care about this? Because sometimes we need to map complex
numbers into the real numbers to get information on the complex numbers.
This problem will show you that.

I’m not going to prove this here, but every complex number can be expressed
in exponential (or polar) form:

z = a+ bi =
√
a2 + b2eiθ = (zz)1/2eiθ = reiθ , (6)

where we can think of r as the length of the complex numbers z or z .

r ≡ (zz)1/2 or r2 = zz = |z |2 . (7)

So, it will be good to know all this stuff in this section before you attempt
to follow my solutions to these complex variables problems.

By the way, the complex numbers are what’s called a field, so they can
be added, subtracted, multiplied, and divided by each other (except you can’t
divide by zero, as usual). And, therefore, you can apply the quadratic formula
to them! (Yay!)

Lemma 1: If a complex number z is equal to its own conjugate z = z , it’s real.

Lemma 2: If a complex number z is complex conjugated twice then there’s no
change: z = z.

Lemma 3: The complex conjugated of a product or a sum is the product or
sum of the complex conjugates: z1z2 = z1z2 and z1 + z2 = z1 + z2.

Lemma 4: If s, t ∈ R and z = s+ ti then

iz = t+ si . (8)

3 Basics of Complex Numbers with Trig
Functions

Let’s begin with the Euler relations:

cos θ + i sin θ = eiθ , (9a)

cos θ − i sin θ = eiθ , (9b)
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Next, let’s invert them:

cos θ =
1

2
(eiθ + eiθ) , (10a)

sin θ =
1

2i
(eiθ − eiθ) , (10b)

where, in the above cases, I used the usually understood real variable θ, but
that can be replaced by the complex variable z. In fact, soon we will do so.

Okay, how to represent tan z by exponentials?

tan z =
sin z

cos z
=

1

i

eiz − e−iz

eiz + e−iz
. (11)

4 The Solution

If you put the Given relation (1) into Wolfram Alpha, you’ll get back

z = 0, 1, −1

2
± i

√
3

2
, z =

1

4
(−1−

√
5)− 1

2
i

√
1

2
(5−

√
5) . (12)

The first two of these are the ‘trivial’ solutions. From here on, I’m interested
only in the nontrivial solutions.

Now, if we multiply (1) through by z, we get

z15 = zz = r2 . (13)

The next thing we should try to do is to determine r. So, multiply (13) through
by its conjugate to get

z15z15 = (zz)15 = r4 , (14)

but this implies that r30 = r4, which is only possible for real, positive r, if r = 1.
Thus, we go back to (13) to write

z15 = 1 = e2πi . (15)

I included the term e2πi because we are about to take roots, and that’s what
you need to do most of the time when using complex numbers. Thus,

z = e2πik/15, (k = 0, 1, 2, . . . , 14) , (16)

which gives us 15 roots, which are apparently not all distinct. However, I won’t
investigate each case for various k, just the special ones.

Case k = 5:

z = e2πi/3 = −1

2
+

i
√
3

2
. (17)

Case k = 10:

z = e4πi/3 = −1

2
− i

√
3

2
. (18)

Case k = 8 gives us another third-quadrant value:

z = e16iπ/15 . (19)
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