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Abstract

Here we use the unipodal algebra to assist in solving the problem, which
is given to us on YouTube. Although I’m referring to the series under
the name ‘olympiad’, the problems are from diverse sources as olympiads,
entrance exams, SATs, and the like.

The YouTube video is found at:

https://www.youtube.com/watch?v=JTt0wjqG7vM

Titled: Harvard University Admission Question ||

Algebra Exam || 99\% Failed Entrance Test

Presenter: Super Academy

1 The Problem

Given the relations

x5 + y5 = 152 , (1a)

x+ y = 2 , (1b)

find all solutions for x, y over the complex numbers.

Note: The Presenter is good at this kind of solution. If I tried to do it the stan-
dard way, I might give us after a couple hours with no solutions. However, the
unipodal solution given here is both interesting and relatively straightforward.

2 The Prerequisites: The unipodal algebra

This algebra is formed as the extension of the complex numbers by the number
u, where u2 = 1, and u commutes with the complex numbers. The number u is
said to be ‘unipotent’. The set of numbers constructed this way are the unipodal
numbers, a particular such number is called a unipode. The main conjugation
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operator on unipode a is the unegation operator, written a−. It does not affect
complex numbers, but it sends every u to its negative. Hence, if a = x + yu,
where x, y are complex numbers, then a− = x− yu. Unegation distributes over
addition and multiplication.

The following are some properties that will come in handy:

u2 = 1 , (2a)

u± ≡ 1
2 (1± u) , (2b)

u2
± = u± , (2c)

u = u+ − u− , (2d)

u+u− = 0 , (2e)

u+ + u− = 1 , (2f)

uu+ = u+ , (2g)

uu− = −u− , (2h)

(u±)
− = u∓ . (2i)

You should prove (2c) – (2i). By the way, these two special unipodes u± square
to themselves. Such numbers in a ring are referred to as idempotents. In the
unipodal numbers they have no inverses. The fact that the unipodal number
system is not a field is of little concern to me. In fact, most unipodes have
inverses, so long as they are not multiples of one of the idempotents. If one
needs field elements, the scalars of the unipodal numbers comprise the field of
complex numbers.

Two often-used results are, for complex numbers w, z (which are used to
convert unipodes between the bases {1, u} and {u+, u−}):

w + zu = (w + z)u+ + (w − z)u− , (3a)

wu+ + zu− = 1
2 (w + z) + 1

2 (w − z)u . (3b)

Much of the algebraic power of the unipodal algebra comes from 1) it being
able to switch the presentation of a unipode between the standard basis and the
idempotent basis, the latter basis being well suited for taking powers and roots.

3 The Solution

The first question I asked myself in trying to solve this problem is how I should
get some equation or equations of fifth-order that won’t be a huge problem to
deal with. The unipodal algebra provides us a lot of help with that issue.

Clearly, most obvious thing to do to get an expression for x and y both to
the fifth powers is to define a unipode in idempotent form, which can then be
easily raised to the fifth power. Now, however, what’s obvious and what’s usual
is not always the best way to proceed, but in this case, it is.
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Therefore, let our ‘first unipode’ be defined as follows:1

a ≡ xu+ + yu− . (4)

Then, to have x and y each raised to the nth power, we get simply

a = xnu+ + ynu− . (5)

Anyway, we will need the sum of x and y because we will need soon to use the
constraint (1b). To that end, we will simply flip the basis of a in (4) to get

a = 1
2 (x+ y) + 1

2 (x− y)u . (6a)

= 1 + ku . (6b)

= (1 + k)u+ + (1− k)u− . (6c)

where we used constraint (1b), and where

k ≡ 1
2 (x− y) , (6d)

which is introduced simply for ease of handling in future complicated expres-
sions.

So, stop and think about this: Eqs. (1b) and (6d) are a coupled pair of
first-order equations, so that, if we could solve for k, we could then easily solve
them for x and y.

But before we can do that, we must use the constraint equation (1a). But
how? The most obvious thing to do would be to raise both equations (4) and (6c)
to the fifth power and hope for the best. And this might work. But a slightly
less complicated trick will be used (we’ll refer to this claim as ‘the setup‘) is to
raise both of them to the fourth power and equate corresponding coefficients,
to get

x4 = (1 + k)4 = 1 + 4k + 6k2 + 4k3 + k4 , (7a)

y4 = (1− k)4 = 1− 4k + 6k2 − 4k3 + k4 . (7b)

Note: It may be interesting to realize that at this point we are already finished
using the unipodal algebra for this problem! From here on, it’s just conventional
algebra.

Okay, now here’s the payoff of the ‘trick’ I mentioned earlier. We multiply
through by x on (7a) and by y on (7b), yielding

x5 = x+ 4xk + 6xk2 + 4xk3 + xk4 , (8a)

y5 = y − 4yk + 6yk2 − 4yk3 + yk4 . (8b)

1I define the term ‘first unipode’ as the point of entrance of the real or complex numbers
into the unipodal algebra. There are often a variety of choices for this first unipode that could
work, also usually one that stands out as superior. The fun is, finding it!
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There’s nothing left to do but to add these equations together and hope we get
a solvable equation in k:

x5 + y5 = (x+ y) + 4(x− y)k + 6(x+ y)k2 + 4(x− y)k3 + (x+ y)k4 ,

= 2 + 8k2 + 12k2 + 8k4 + 2k4 . (9a)

On using (1a) and simplifying, we get that

k4 + 2k2 − 15 = 0 , (10)

and with that we note that we have finished using all the given information.
There’s nothing left to do now but try to use the equation to find the solutions.

Using the quadratic equation on solving for the unknown k2, gives

k2 =
−2±

√
64

2
= −1± 4 . (11)

We’ll begin with the + root: k2 = 3. We have the simultaneous set:

k = +
√
3 = 1

2 (x− y) , (12a)

2 = x+ y . (12b)

Solving these, we get

x = 1 +
√
3 , y = 1−

√
3 , (13a)

x = 1−
√
3 , y = 1 +

√
3 . (13b)

Next, we go with the − root to (11): k2 = −5. We have the couple:

k = ±i
√
5 = 1

2 (x− y) , (14a)

2 = x+ y . (14b)

Solving these, we get

x = 1 + i
√
5 , y = 1− i

√
5 , (15a)

x = 1− i
√
5 , y = 1 + i

√
5 . (15b)

4 Conclusion

I can explain why we have ended up with only four solutions to a fifth degree
equation. A fourth-order equation in x is obtained by eliminating y between
the two given equations (1a) and (1b), the terms x5 and −x5 canceling out.

As a postscript, the fourth-order equation we get by adding together (7a)
and (7b), yielding

x4 + y4 = 2 + 12k2 + 2k4 , (16)

turns out to be a mere identity in the variable x.
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