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Abstract

Here we use the unipodal algebra to assist in solving the problem, which
is given to us on YouTube. Although I’m referring to the series under
the name ‘olympiad’, the problems are from diverse sources as olympiads,
entrance exams, SATs, and the like.

The YouTube video is found at:

https://www.youtube.com/watch?v=vhbLBruwDj0

Titled: A Nice math Olympiad Problem --

You should know this trick

Presenter: Learncommunolizer

1 The Problem

Given the relation
3
√
x+ 49 + 3

√
x− 49 = 2 , (1)

solve for x over the complex numbers.

2 The Prerequisites: The unipodal algebra

This algebra is formed as the extension of the complex numbers by the number
u, where u2 = 1, and u commutes with the complex numbers. The number u is
said to be ‘unipotent’. The set of numbers constructed this way are the unipodal
numbers, a particular such number is called a unipode. The main conjugation
operator on unipode a is the unegation operator, written a−. It does not affect
complex numbers, but it sends every u to its negative. Hence, if a = x + yu,
where x, y are complex numbers, then a− = x− yu. Unegation distributes over
addition and multiplication.
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The following are some properties that will come in handy:

u2 = 1 , (2a)

u± ≡ 1
2 (1± u) , (2b)

u2
± = u± , (2c)

u = u+ − u− , (2d)

u+u− = 0 , (2e)

u+ + u− = 1 , (2f)

uu+ = u+ , (2g)

uu− = −u− , (2h)

(u±)
− = u∓ . (2i)

You should prove (2c) – (2i). By the way, these two special unipodes u± square
to themselves. Such numbers in a ring are referred to as idempotents. In the
unipodal numbers they have no inverses. The fact that the unipodal number
system is not a field is of little concern to me. In fact, most unipodes have
inverses, so long as they are not multiples of one of the idempotents. If one
needs field elements, the scalars of the unipodal numbers comprise the field of
complex numbers.

Two often-used results are, for complex numbers w, z (which are used to
convert unipodes between the bases {1, u} and {u+, u−}):

w + zu = (w + z)u+ + (w − z)u− , (3a)

wu+ + zu− = 1
2 (w + z) + 1

2 (w − z)u . (3b)

The unipodal algebra has two copies of the complex numbers, one for each
component. In any true unipodal equation, the correponding coefficients across
the equal sign are equal to each other. This is similar to equating real and
imaginary components across the equal sign in the complex algebra.

When I first used the unipodal algebra to solve polynomial equations (c.
1984-5), I used the Clifford 1 algebra over the complex numbers. The ‘1’ means
one unit vector u. So, a Clifford 1 number c can be represented as

c = a+ bu , (4)

where a, b are complex numbers. Of course, u being a unit vector, then

u2 = 1 . (5)

Now, the standard basis for this space is {1, u} and the scalars are the complex
numbers. To extract the ‘scalar part’ of (4), we use the selection operator ⟨ · ⟩,
as follows:

⟨ c ⟩ = ⟨ a+ bu ⟩ = a , (6)
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One can also subscript the selector with a zero for the scalar part:

⟨ c ⟩0 = ⟨ a+ bu ⟩0 = a , (7)

and with a ‘1’ for the vector part:

⟨ c ⟩1 = ⟨ a+ bu ⟩1 = bu . (8)

When I adopted the name ‘unipodal algebra’ from a paper I cowrote with two
other authors, I found a need to adopt new terminology for naming the scalar
and vector parts. Just as complex numbers are composed of a real number times
the unit ‘1’ and another real number times the unit imaginary i, the unipodal
numbers are composed of a complex number times the unit ‘1’ and another
complex number times the unipotent number u. The part of the unipode that
does not contain the unipotent factor is called the ‘complex part’ of the unipode.
The part that does contain the unipotent element factor is called the uniplex
part of the unipode.

Now, before you complain that calling the scalar part of a unipode the ‘com-
plex part’ is nonsense, I point out that in complex analysis, the nonimaginary
part is referred to as the ‘real part’. Lastly, when I say the ‘uniplex part’ in this
series of papers, I refer only to the coefficient of the nonscarlar part, which is
complex only. Thus the uniplex part of unipode c = a + bu is just b. Another
way to think of the uniplex part of c is to take the scalar (or complex) part of
cu.

⟨ c ⟩1 = ⟨ cu ⟩ = ⟨ au+ b ⟩ = b . (9)

Thus, one must be careful when I report I’m taking the uniplex part of a unipode
(across all the papers I’ve written over the years), because at times it may
contain that factor of u and at other times not. But like I said: In this series it
will always mean only the scalar factor of the unipotent element.

Much of the algebraic power of the unipodal algebra comes from 1) it being
able to switch the presentation of a unipode between the standard basis and the
idempotent basis, the latter basis being well suited for taking powers and roots.

3 The Solution

As is usual for this type of problem, I need to define an object complementary
to (1), which shall be

3
√
x+ 49− 3

√
x− 49 ≡ 2k , (10)

where the factor of 2 is introduced to make later calculations easier.
Let’s choose our ‘first unipode’ be defined as follows:1

b ≡ 3
√
x+ 49u+ + 3

√
x− 49u− . (11)

1I define the term ‘first unipode’ as the point of entrance of the real or complex numbers
into the unipodal algebra. There are often a variety of choices for this first unipode that could
work, also usually one that stands out as superior. The fun is, finding it!
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Now we’ll flip the unipode’s basis to the alternate:

b = 1
2

[
3
√
x+ 49 + 3

√
x− 49

]
+ 1

2

[
3
√
x+ 49 + 3

√
x− 49

]
u . (12)

However, according to (1) and (10), we get that

b = k + u . (13)

Next, we add together (1) and (10) and simplify, to get

k + 1 = 3
√
x+ 49 , (14)

which, on cubing both sides, gives

x+ 49 = k3 + 3k2 + 3k + 1 . (15)

Next, we cube (11), and then flip bases, to get

b3 = x+ 49u . (16)

To best utilize this last equation with (15), we can either extract its scalar part
or its uniplex part. I chose its scalar (‘complex’) part:

⟨ b3 ⟩ = ⟨x+ 49u ⟩ = x . (17)

Rearranging, we get

x = ⟨ b3 ⟩ = ⟨ (k + u)3 ⟩ = k3 + 3k . (18)

Great! Now, if we knew the value of k, we could substitute it into this equation
to get x. From (15) and (18), we have that

x+ 49 = (k3 + 3k) + (3k2 + 1) = x+ (3k2 + 1) , (19)

where we did some rearranging, and it yields

k2 = 16 . (20)

Thus, k = ±4 and, with a bit more calculation, we have that

x± = ±76 . (21)
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4 Conclusion

Let’s take a moment to briefly take stock of the unipodal techniques we’ve used
so far in this series that have been useful (and add in one or two that might be
useful in the future):

1) Forming the ‘first unipode’ wisely.

2) Taking roots or powers, especially on unipodes in the idempotent basis.

3) ‘Flipping’ between bases.

4) Extracting the complex and/or uniplex parts across an equation.

5) Taking the ‘magnitude square’ of a unipode. For example, if X = x0 + x1u,
XX− = x2

0−x2
1, which is, of course, just a complex number. If two unipodes

are equal, their square magnitudes are equal, and you are free to calculate their
square magnitudes from either basis.

6) Comparing square magnitudes this way: Xn(X−)n = (XX−)n.

6) If A and B are equal unipodes in standard form, then
a0
a1

=
b0
b1
, but if they

are in idempotent form, then
a+
a−

=
b+
b−

.

Furthermore, we can add to these tricks all the techniques of real and com-
plex number and ring theory.
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