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Abstract

Here we use the unipodal algebra to assist in solving the problem, which
is given to us on YouTube. Although I’m referring to the series under
the name ‘olympiad’, the problems are from diverse sources as olympiads,
entrance exams, SATs, and the like.

The YouTube video is found at:

https://www.youtube.com/watch?v=C-0anvb3D4k

Titled: Japan | A nice Math Olympiad Algebra Problem

| Find x=? & y=?

Presenter: Super Academy

1 The Problem

Given the relation

x2 − y2 =
√
10 , (1)

xy =
√
10 , (2)

solve for x+ y over the complex numbers. (If you really want to, you can solve
for x and y as well.)

2 The Prerequisites: The unipodal algebra

This algebra is formed as the extension of the complex numbers by the number
u, where u2 = 1, and u commutes with the complex numbers. The number u is
said to be ‘unipotent’. The set of numbers constructed this way are the unipodal
numbers, a particular such number is called a unipode. The main conjugation
operator on unipode a is the unegation operator, written a−. It does not affect
complex numbers, but it sends every u to its negative. Hence, if a = x + yu,
where x, y are complex numbers, then a− = x− yu. Unegation distributes over
addition and multiplication.
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The following are some properties that will come in handy:

u2 = 1 , (3a)

u± ≡ 1
2 (1± u) , (3b)

u2
± = u± , (3c)

u = u+ − u− , (3d)

u+u− = 0 , (3e)

u+ + u− = 1 , (3f)

uu+ = u+ , (3g)

uu− = −u− , (3h)

(u±)
− = u∓ . (3i)

You should prove (3c) – (3i). By the way, these two special unipodes u± square
to themselves. Such numbers in a ring are referred to as idempotents. In the
unipodal numbers they have no inverses. The fact that the unipodal number
system is not a field is of little concern to me. In fact, most unipodes have
inverses, so long as they are not multiples of one of the idempotents. If one
needs field elements, the scalars of the unipodal numbers comprise the field of
complex numbers.

Two often-used results are, for complex numbers w, z (which are used to
convert unipodes between the bases {1, u} and {u+, u−}):

w + zu = (w + z)u+ + (w − z)u− , (4a)

wu+ + zu− = 1
2 (w + z) + 1

2 (w − z)u . (4b)

The unipodal algebra has two copies of the complex numbers, one for each
component. In any true unipodal equation, the correponding coefficients across
the equal sign are equal to each other. This is similar to equating real and
imaginary components across the equal sign in the complex algebra.

When I first used the unipodal algebra to solve polynomial equations (c.
1984-5), I used the Clifford 1 algebra over the complex numbers. The ‘1’ means
one unit vector u. So, a Clifford 1 number c can be represented as

c = a+ bu , (5)

where a, b are complex numbers. Of course, u being a unit vector, then

u2 = 1 . (6)

Now, the standard basis for this space is {1, u} and the scalars are the complex
numbers. To extract the ‘scalar part’ of (5), we use the selection operator ⟨ · ⟩,
as follows:

⟨ c ⟩ = ⟨ a+ bu ⟩ = a , (7)
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One can also subscript the selector with a zero for the scalar part:

⟨ c ⟩0 = ⟨ a+ bu ⟩0 = a , (8)

and with a ‘1’ for the vector part:

⟨ c ⟩1 = ⟨ a+ bu ⟩1 = bu . (9)

When I adopted the name ‘unipodal algebra’ from a paper I cowrote with two
other authors, I found a need to adopt new terminology for naming the scalar
and vector parts. Just as complex numbers are composed of a real number times
the unit ‘1’ and another real number times the unit imaginary i, the unipodal
numbers are composed of a complex number times the unit ‘1’ and another
complex number times the unipotent number u. The part of the unipode that
does not contain the unipotent factor is called the ‘complex part’ of the unipode.
The part that does contain the unipotent element factor is called the uniplex
part of the unipode.

Now, before you complain that calling the scalar part of a unipode the ‘com-
plex part’ is nonsense, I point out that in complex analysis, the nonimaginary
part is referred to as the ‘real part’. Lastly, when I say the ‘uniplex part’ in this
series of papers, I refer only to the coefficient of the nonscarlar part, which is
complex only. Thus the uniplex part of unipode c = a + bu is just b. Another
way to think of the uniplex part of c is to take the scalar (or complex) part of
cu.

⟨ c ⟩1 = ⟨ cu ⟩ = ⟨ au+ b ⟩ = b . (10)

Thus, one must be careful when I report I’m taking the uniplex part of a unipode
(across all the papers I’ve written over the years), because at times it may
contain that factor of u and at other times not. But like I said: In this series it
will always mean only the scalar factor of the unipotent element.

Much of the algebraic power of the unipodal algebra comes from 1) it being
able to switch the presentation of a unipode between the standard basis and the
idempotent basis, the latter basis being well suited for taking powers and roots.

3 The Solution

I’ll begin by making the standard constructions.

x+ y = k , (11)

x− y = ℓ , (12)

At this point, I want to outline a strategy for the rest of the solution. First,
since I do not intend to solve for x+ y by first solving for x and y individually,
I want to eliminate the introduced variable ℓ as soon as possible. This is the
course after that:
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1) Pick the ‘first unipode’ that will specifically faciliate employing the given
constraints (1) and (2).

2) Any function of x, y that cannot be immediately replaced by the given con-
straints should be replaced by some function of k.

3) Look for some function of k that can be turned into a polynomial in k that
can be solve analytically for its roots.

So, how to replace ℓ by something in k perhaps? From (1), we have that

x2 − y2 = (x+ y)(x− y) = kℓ =
√
10 , (13)

from which we get

ℓ =

√
10

k
. (14)

It turns out that we won’t need ℓ unless we want go the distance and solve for
x and y individually. In that case, we can make use this equation

x− y =

√
10

k
. (15)

But almost certainly we’ll need to deal with the expression x2 + y2. So,

k2 = (x+ y)2 = x2 + 2xy + y2 = x2 + y2 + 2
√
10 , (16)

hence,
x2 + y2 = k2 − 2

√
10 , (17)

which comforms to heuristic rule 2) above.

For our first unipode, let’s try

b = x2 + y2u = (x2 + y2)u+ + (x2 − y2)u−

= (k2 − 2
√
10)u+ +

√
10u−

= 1
2 (k

2 −
√
10) + 1

2 (k
2 − 3

√
10)u . (18)

Now, the product of the coefficients of the unipode on the top line has to
equal the product of the coefficients of the unipode on the bottom line, giving
us

x2y2 = 1
2 (k

2 −
√
10) 12 (k

2 − 3
√
10) . (19)

But xy =
√
10, hence, x2y2 = 10. Therefore, with a bit of calculation, (19)

becomes
k4 − 4

√
10k2 − 10 = 0 . (20)
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I’ll let Wolframalpha.com solve for the roots. For the real roots, we get

k = ± 4
√
2

√
5 + 2

√
5 . (21)

And for the imaginary roots:

k = ±i
4
√
2

√
5− 2

√
5 . (22)

To arrive at the form of answer that Presenter gave, do this

k = ± 4
√
2

(
4
√
5

4
√
5

)√
5 + 2

√
5 = ± 4

√
10

√√
5 + 2 . (23)

4 Aftermath

If you want to solve for x and y individually, now that we have the values of k,
use them in Equation (11) and couple that with Equation (15).
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