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Abstract

Here we use the unipodal algebra to assist in solving the problem, which
is given to us on YouTube. Although I’m referring to the series under
the name ‘olympiad’, the problems are from diverse sources as olympiads,
entrance exams, SATs, and the like.

The YouTube video is found at:

https://www.youtube.com/watch?v=PaMbwZ1VCTY

Titled: A Mind-blowing Math Olympiad Equation | How to solve!!

Presenter: Master T Maths Class

1 The Problem

Given the relations

p+ q = 8 , (1)

pq = 20 , (2)

solve for p and q over the complex numbers.

Note: This problem appears on the face of it to be too simple to benefit from
applying the unipodal methods, but I’ll do so anyway, in the hopes that there’s
something valuable to learn along the way.

2 The Prerequisites: The unipodal algebra

This algebra is formed as the extension of the complex numbers by the number
u, where u2 = 1, and u commutes with the complex numbers. The number u is
said to be ‘unipotent’. The set of numbers constructed this way are the unipodal
numbers, a particular such number is called a unipode. The main conjugation
operator on unipode a is the unegation operator, written a−. It does not affect
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complex numbers, but it sends every u to its negative. Hence, if a = x + yu,
where x, y are complex numbers, then a− = x− yu. Unegation distributes over
addition and multiplication.

The following are some properties that will come in handy:

u2 = 1 , (3a)

u± ≡ 1
2 (1± u) , (3b)

u2
± = u± , (3c)

u = u+ − u− , (3d)

u+u− = 0 , (3e)

u+ + u− = 1 , (3f)

uu+ = u+ , (3g)

uu− = −u− , (3h)

(u±)
− = u∓ . (3i)

You should prove (3c) – (3i). By the way, these two special unipodes u± square
to themselves. Such numbers in a ring are referred to as idempotents. In the
unipodal numbers they have no inverses. The fact that the unipodal number
system is not a field is of little concern to me. In fact, most unipodes have
inverses, so long as they are not multiples of one of the idempotents. If one
needs field elements, the scalars of the unipodal numbers comprise the field of
complex numbers.

Two often-used results are, for complex numbers w, z (which are used to
convert unipodes between the bases {1, u} and {u+, u−}):

w + zu = (w + z)u+ + (w − z)u− , (4a)

wu+ + zu− = 1
2 (w + z) + 1

2 (w − z)u . (4b)

The unipodal algebra has two copies of the complex numbers, one for each
component. In any true unipodal equation, the correponding coefficients across
the equal sign are equal to each other. This is similar to equating real and
imaginary components across the equal sign in the complex algebra.

When I first used the unipodal algebra to solve polynomial equations (c.
1984-5), I used the Clifford 1 algebra over the complex numbers. The ‘1’ means
one unit vector u. So, a Clifford 1 number c can be represented as

c = a+ bu , (5)

where a, b are complex numbers. Of course, u being a unit vector, then

u2 = 1 . (6)

Now, the standard basis for this space is {1, u} and the scalars are the complex
numbers. To extract the ‘scalar part’ of (5), we use the selection operator ⟨ · ⟩,
as follows:

⟨ c ⟩ = ⟨ a+ bu ⟩ = a , (7)
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One can also subscript the selector with a zero for the scalar part:

⟨ c ⟩0 = ⟨ a+ bu ⟩0 = a , (8)

and with a ‘1’ for the vector part:

⟨ c ⟩1 = ⟨ a+ bu ⟩1 = bu . (9)

When I adopted the name ‘unipodal algebra’ from a paper I cowrote with two
other authors, I found a need to adopt new terminology for naming the scalar
and vector parts. Just as complex numbers are composed of a real number times
the unit ‘1’ and another real number times the unit imaginary i, the unipodal
numbers are composed of a complex number times the unit ‘1’ and another
complex number times the unipotent number u. The part of the unipode that
does not contain the unipotent factor is called the ‘complex part’ of the unipode.
The part that does contain the unipotent element factor is called the uniplex
part of the unipode.

Now, before you complain that calling the scalar part of a unipode the ‘com-
plex part’ is nonsense, I point out that in complex analysis, the nonimaginary
part is referred to as the ‘real part’. Lastly, when I say the ‘uniplex part’ in this
series of papers, I refer only to the coefficient of the nonscarlar part, which is
complex only. Thus the uniplex part of unipode c = a + bu is just b. Another
way to think of the uniplex part of c is to take the scalar (or complex) part of
cu.

⟨ c ⟩1 = ⟨ cu ⟩ = ⟨ au+ b ⟩ = b . (10)

Thus, one must be careful when I report I’m taking the uniplex part of a unipode
(across all the papers I’ve written over the years), because at times it may
contain that factor of u and at other times not. But like I said: In this series it
will always mean only the scalar factor of the unipotent element.

Much of the algebraic power of the unipodal algebra comes from 1) it being
able to switch the presentation of a unipode between the standard basis and the
idempotent basis, the latter basis being well suited for taking powers and roots.

3 The Solution

I’ll begin by making the standard construction.

p− q = k , (11)

I will guess that we’ll need the expression p2 + q2 at some point, so let’s find it.
Given (1), let’s try this

64 = (p+ q)2 = p2 + 2pq + q2 = p2 + q2 + 40 , (12)

where we also used (2). Thus,

p2 + q2 = 24 . (13)
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Now, this time we introduce as our ‘first unipode’

b = p+ qu . (14)

On squaring this, we get

b2 = p2 + q2 + 2pqu

= 24 + 40u (a ‘pure’ unipode!)

= 64u+ + (−16)u− . (15)

On taking the square root of this, we have that
So,

b = ±8u+ ± i4u−

= 1
2 (±8 +±i4) + 1

2 (±8−∓i4)u

= (±4 +±i2) + (±4−∓i2)u , (16)

whose coefficients are p and q, respectively. Therefore, the values for p and q
are, consistent with the givens:

p1 = 4 + 2i , (17)

q1 = 4− 2i , (18)

p2 = 4− 2i , (19)

q2 = 4 + 2i . (20)

4


