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People often overlook the obvious. — Doctor Who

1 Problem

The YouTube video is found at:

https://www.youtube.com/watch?v=Srn-PJwFZgg

Titled: A fun proof for an integerl

Presenter: Prime Newtons

If n is a positive integer, show that1
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is also a positive integer.

2 Solution

Proof by induction.

First, we establish that the expression is a positive integer for the base case
of n = 1.
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and 1 is a positive integer.
This is where we use the inductive hypothesis: For some arbitrary positive

integer n, let
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where a is some integer. Now, assuming this last equation is true, we have to
show that it remains true when n → n + 1. As a mere visual aide, I’m setting

1I changed the problem slightly.
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the new expression equal to x (which is quite likely not equal to a). Thus,
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= 1 + a+ 2n+ n2 . (4)

Thus x, being the sum of positive integers, is itself a positive integer, and we
are finished.
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