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Abstract

Here we use the unipodal algebra to assist in solving the problem, which
is given to us on YouTube. Although I’m referring to the series under
the name ‘olympiad’, the problems are from diverse sources as olympiads,
entrance exams, SATs, and the like.

First things first...But not necessarily in that order.
— Doctor Who

The YouTube video is found at:

Source: https://www.youtube.com/watch?v=4FPdSXaydHA

Title: A very tricky Oxford University Exponential Question

Presenter: Super Academy

1 The Problem

Given the relation
(
√
2 + 1)x + (

√
2− 1)x = 34 , (1)

find the values of x.

2 The Prerequisites: The unipodal algebra

This algebra is formed as the extension of the complex numbers by the number
u, where u2 = 1, and u commutes with the complex numbers. The number u is
said to be ‘unipotent’. The set of numbers constructed this way are the unipodal
numbers, a particular such number is called a unipode. The main conjugation
operator on unipode a is the unegation operator, written a−. It does not affect
complex numbers, but it sends every u to its negative. Hence, if a = x + yu,
where x, y are complex numbers, then a− = x− yu. Unegation distributes over
addition and multiplication.

1



The following are some properties that will come in handy:

u2 = 1 , (2a)

u± ≡ 1
2 (1± u) , (2b)

u2
± = u± , (2c)

u = u+ − u− , (2d)

u+u− = 0 , (2e)

u+ + u− = 1 , (2f)

uu+ = u+ , (2g)

uu− = −u− , (2h)

(u±)
− = u∓ . (2i)

You should prove (2c) – (2i). By the way, these two special unipodes u± square
to themselves. Such numbers in a ring are referred to as idempotents. In the
unipodal numbers they have no inverses. The fact that the unipodal number
system is not a field is of little concern to me. In fact, most unipodes have
inverses, so long as they are not multiples of one of the idempotents. If one
needs field elements, the scalars of the unipodal numbers comprise the field of
complex numbers.

Two often-used results are, for complex numbers w, z (which are used to
convert unipodes between the bases {1, u} and {u+, u−}):

w + zu = (w + z)u+ + (w − z)u− , (3a)

wu+ + zu− = 1
2 (w + z) + 1

2 (w − z)u . (3b)

Next, we learn how to take the ‘norm’ of a unipode. Let w be a unipode in
standard basis, given by

w = a+ bu , (4)

where a, b are complex numbers. The ‘norm’ of w is given as1

ww− = (a+ bu)(a− bu) = a2 − b2 . (5)

Now, let y be a unipode in idempotent basis, given as

y = Au+ +Bu− , (6)

where A,B are complex numbers. The ‘norm’ of y is given as

yy− = (Au+ +Bu−)(Au− +Bu+) = ABu+ +ABu−

= AB(u+ + u−) = AB . (7)

1Calling ww− a ‘norm’ is rather imprecise. In accordance with terminology used by G.

Sobczyk, I will call
∣∣ww− ∣∣1/2 the (unipodal) modulus, and ww− the (unipodal) dimodulus

of w. See the Appendix.
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The unipodal algebra has two copies of the complex numbers, one for each
component. In any true unipodal equation, the correponding coefficients across
the equal sign are equal to each other. This is similar to equating real and
imaginary components across the equal sign in the complex algebra.

When I first used the unipodal algebra to solve polynomial equations (c.
1984-5), I used the Clifford 1 algebra over the complex numbers. The ‘1’ means
one unit vector u. So, a Clifford 1 number c can be represented as

c = a+ bu , (8)

where a, b are complex numbers. Of course, u being a unit vector, then

u2 = 1 . (9)

Now, the standard basis for this space is {1, u} and the scalars are the complex
numbers. To extract the ‘scalar part’ of (8), we use the selection operator ⟨ · ⟩,
as follows:

⟨ c ⟩ = ⟨ a+ bu ⟩ = a , (10)

One can also subscript the selector with a zero for the scalar part:

⟨ c ⟩0 = ⟨ a+ bu ⟩0 = a , (11)

and with a ‘1’ for the vector part:

⟨ c ⟩1 = ⟨ a+ bu ⟩1 = bu . (12)

When I adopted the name ‘unipodal algebra’ from a paper I cowrote with two
other authors, I found a need to adopt new terminology for naming the scalar
and vector parts. Just as complex numbers are composed of a real number times
the unit ‘1’ and another real number times the unit imaginary i, the unipodal
numbers are composed of a complex number times the unit ‘1’ and another
complex number times the unipotent number u. The part of the unipode that
does not contain the unipotent factor is called the ‘complex part’ of the unipode.
The part that does contain the unipotent element factor is called the uniplex
part of the unipode.

Now, before you complain that calling the scalar part of a unipode the ‘com-
plex part’ is nonsense, I point out that in complex analysis, the nonimaginary
part is referred to as the ‘real part’. Lastly, when I say the ‘uniplex part’ in this
series of papers, I refer only to the coefficient of the nonscarlar part, which is
complex only. Thus the uniplex part of unipode c = a + bu is just b. Another
way to think of the uniplex part of c is to take the scalar (or complex) part of
cu.

⟨ c ⟩1 = ⟨ cu ⟩ = ⟨ au+ b ⟩ = b . (13)

Thus, one must be careful when I report I’m taking the uniplex part of a unipode
(across all the papers I’ve written over the years), because at times it may
contain that factor of u and at other times not. But like I said: In this series it
will always mean only the scalar factor of the unipotent element.
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Much of the algebraic power of the unipodal algebra comes from 1) it being
able to switch the presentation of a unipode between the standard basis and the
idempotent basis, the latter basis being well suited for taking powers and roots.

3 The Solution

First, we define the auxiliary parameter k:

k ≡ 1
2 [ (

√
2 + 1)x − (

√
2− 1)x ] . (14)

Let our first unipode be

a = (
√
2 + 1)u+ + (

√
2− 1)u− (15a)

=
√
2 + u . (15b)

Now for the di-modulus of a:

aa− = (
√
2)2 − 12 = 1 . (16)

Now it’s time to reach the ceiling:

ax = (
√
2 + 1)xu+ + (

√
2− 1)xu− (17a)

= 1
2 [ (

√
2 + 1)x + (

√
2− 1)x ] + 1

2 [ (
√
2 + 1)x − (

√
2− 1)x ]u (17b)

= 17 + ku , (17c)

where we used (1) and (14).
For the di-modulus of ax,we have:

axax− = 172 − k2 = (aa−)x = 1 . (18)

From this we get for k:
k = ±12

√
2 . (19)

Putting (1) and (14) together:

(
√
2 + 1)x + (

√
2 + 1)x = 34 , (20a)

(
√
2 + 1)x − (

√
2 + 1)x = ±12

√
2 . (20b)

On adding them, and then subtracting them, we get (with simplification)

(
√
2 + 1)x = 17± 12

√
2 , (21a)

(
√
2− 1)x = 17∓ 12

√
2 . (21b)

How shall we proceed? If we multiply these together, we’ll just end up with
1 = 1. So, let’s divide them (and get ready for a lot of computation).

(
√
2 + 1)x

(
√
2− 1)x

=
17± 12

√
2

17∓ 12
√
2
. (22)
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I’ll just do one of these computations for proof of concept.

(
√
2 + 1)x

(
√
2− 1)x

=
17 + 12

√
2

17− 12
√
2
. (23)

Then
(
√
2 + 1)x

(
√
2− 1)x

(
√
2 + 1)x

(
√
2 + 1)x

=
17 + 12

√
2

17− 12
√
2

17 + 12
√
2

17 + 12
√
2
. (24)

So,
(
√
2 + 1)2x = (17 + 12

√
2)2 . (25)

Thus,
(
√
2 + 1)x = 17 + 12

√
2 . (26)

Given that this is one of those fancy ‘olympiad’ style problems, it’s time
to forego using general methods (such as taking logarithms across that last
equation) and look for a simple solution. In that vein, let’s just assume that x
is a positive integer. So, we can start at 1 and keep increasing the value until,
hopefully, we get a solution.

Well, x = 1, 2, 3 won’t work, but what about x = 4? Actually, it works.
Remember, though, that thsresult a only the ‘proof of concept’ case.

4 Conclusion

Let’s take a moment to briefly take stock of the unipodal techniques we’ve used
so far in this series that have been useful (and add in one or two that might be
useful in the future):

1) Forming the ‘first unipode’ wisely.

2) Taking roots or powers, especially on unipodes in the idempotent basis.

3) ‘Flipping’ between bases.

4) Extracting the complex and/or uniplex parts across an equation.

5) Taking the ‘magnitude square’ of a unipode. For example, if X = x0 + x1u,
XX− = x2

0−x2
1, which is, of course, just a complex number. If two unipodes

are equal, their square magnitudes are equal, and you are free to calculate their
square magnitudes from either basis.

6) Comparing square magnitudes this way: Xn(X−)n = (XX−)n.

6) If A and B are equal unipodes in standard form, then
a0
a1

=
b0
b1
, but if they

are in idempotent form, then
a+
a−

=
b+
b−

.

Furthermore, we can add to these tricks all the techniques of real and com-
plex number and ring theory.
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5 Appendix

Here I want to present a bit more theory on the unipodal algebra. I’ve found
the need to do this because the broader the space of algebra problems I try to
solve with the unipodal algebra, the broader the unipodal theory I find I need
to draw upon. And if I have to, the reader has to as well.

Note: I will be making references to Garret Sobczyk’s book New Foundations in
Mathematics, The Geometric Concept of Number [1], particularly in the sections
he has on the unipodal and hyperbolic numbers.

Let’s begin with the algebra of the hyperbolic extrension of the real num-
bers. We start with the real numbers R and extend them by the unipotent
element u. This is denoted by R [u]. Thus, a typical hyperbolic number h in
standard form could be

h = x+ yu , (27)

where x, y are real numbers. Flipping this to idempotent form, we get

h = h+u+ + h−u− . (28)

For considerations due to symmetric 2×2 matrices, Sobczyk calls the process of
going from (27) to (28) the spectral decomposition of (27) ([1], p. 33). I suppose
we could call this the ‘spectral basis’. However, we will stick with calling it the
‘idempotent basis’.

Let w be a general unipodal number for starters. Now, if w is neither zero
nor a multiple of one of the idempotents, then it will have an inverse. The
easiest way to find the inverse of w is to cast it first into the idempotent basis,
like this:

w = w+u+ + w−u− . (29)

Then its inverse is

w−1 = w−1
+ u+ + w−1

− u− =
1

w+
u+ +

1

w−
u− . (30)

Clearly, this inverse exists because neither w+ nor w− is zero, which we know
to be the case because if either of them were zero, then w in (29) would reduce
to being a multiple of one of the idempotents, which we have disallowed.

Next, comes the important issue of defining some sort of magnitude on the
unipodal numbers, starting with the hyperbolic numbers. For hyperbolic num-
ber h, we can define the hyperbolic modulus by ([1], p. 25):

|h |h ≡
√

|hh− | , (31)

where, of course, hh− is a real number.
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Now, we can define something similar for unipodal numbers, such as for
unipodal number w, we can define the unipodal modulus by:

|w |u ≡
√
|ww− | , (32)

where, of course, ww− is a complex number, but |w |u is a real number.
Now, I know why the real numbers play such an important role in the hy-

perbolic numbers, that being its close association with the hyperbolic plane and
Lorentzian geometry. But it’s been my experience in using the unipodal algebra
to solve problems, that magnitudes of them represented by real numbers have
not played much, if any, role (at least so far). Therefore, I propose to define a
more useful notion of modulus for what I’m doing.

For unipodal number w, we can define the unipodal di-modulus by:

mod (w) = ww− , (33)

where, of course, ww− is a complex number. The meaning of ‘di-modulus’ is
this: The ‘di’ part refers to two aspects of the complex number ww−, that
being its magnitude and complex phase. And by not introducing squareroots,
we refrain from burdening the algebra with unnecessary algebraic complications.

Theorem: If w is a unipode such that

ww− = 1 , (34)

then
w−1 = w− . (35)

Proof:

Clearly, w is not zero, nor is it a multiple of an idempotent. Let’s prove this
by contradiction. Assume that

w = αu+ , (36)

where α is a complex number. Then

ww− = (αu+)(αu−) = α2u+u− = 0 . (37)

But ww− cannot be both unity and zero at the same time, hence, a contradic-
tion. Therefore w is not a multiple of u+; and by a similar argument, it is not
a multiple of u−.

Thus we know that w−1 exists. Therefore, multiplying across (34), we have
that

w−1(ww−) = (w−1w)w− = w−1 . (38)

And thus,
w− = w−1 . (39)
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Lemma: If a, b are unipodes, then

a−b− = (ab)− . (40)

Proof: Hint: Set a = a+u+ + a−u− and b = b+u+ + b−u− and work it out.

Theorem: If w is a unipode then for positive integer n

(w−)n = (wn)− . (41)

Proof: (By induction) For n = 1 there’s nothing to show.

Multiply (41) through by w−:

w−(w−)n = w−(wn)− . (42)

The LHS becomes (w−)n+1 by ordinary product-counting rules. The RHS be-
comes (wn+1)− by the previous lemma. Therefore,

(w−)n+1 = (wn+1)− . (43)

So, by assuming that the rule is true for case n, we were able to show that the
rule also works for case n+ 1. And we’re done.
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