Math Diversions, Problem 5

P. Reany

May 8, 2023

1 Problem

This problem is found on the YouTube channel **Ankit Math Magics**, from April 14, 2023:

https://www.youtube.com/watch?v=Y-dAhOmR_68

My solution here is a little different from that given by the presenter:

Statement of the problem:

Given the following equation, solve for x:

$$3^x \cdot 7^{x^2} = 21. (1)$$

The presenter gave a solution along this line: Take the log across the equation, resulting in

$$x\log 3 + x^2\log 7 = \log 21\,, (2)$$

where the base of the logarithm is not too important. Anyway, the presenter then rewrote this equation in standard form to apply the quadratic formula, which he did.¹ By the way, by the Fundamental Theorem of Algebra we know that (2) has two solutions for x.

2 My Solution

Now, in my case, as soon as I saw this equation, it looked to me to try something very different. Since $21 = 3 \cdot 7$, I rewrote (1) to get

$$3^x \cdot 7^{x^2} = 3 \cdot 7. \tag{3}$$

Then, it was obvious that one solution is x = 1, giving us:

$$3^1 \cdot 7^1 = 3 \cdot 7 \,. \tag{4}$$

 $^{^1\}mathrm{This}$ seems the most general way to proceed with this kind of problem.

Then it occurred to me to divide (1) by (4) to get:

$$3^{x-1} \cdot 7^{x^2-1} = 1. (5)$$

Having unity as the RHS is a rather beneficial constraint, and here's why. Rewrite (5) in the form

$$[3 \cdot 7^{x+1}]^{x-1} = 1. (6)$$

Once again, we see that x = 1 is a solution. But is there another? Requiring $x \neq 1$ forces a constraint on what's inside the square brackets, namely,

$$3 \cdot 7^{x+1} = 1, \tag{7}$$

which is a much simpler equation to deal with than (1). Now it's time to take a logarithm, but this time by base 7^{2} to get:

$$\log_7 3 + (x+1) = 0.$$
(8)

Solving for x, we get the second solution:

$$x = -1 - \log_7 3. (9)$$

3 The numerical value

I asked ChatGPT to find the numerical value of $-1 - \log_7 3$ and got back ≈ -1.565 .³ Under the same request, BingChat returned ≈ -1.43 .

4 Conclusion

The method used by the presenter is straightforward and algorithmic. If the problem has a solution, this method will find it. However, for a subset of problems of this type, such as the current one, a more elegant solution may be possible.

²Once again, which base we use is not all that important.

 $^{^{3}\}mathrm{This}$ value is very near to a value posted by one of the reviewers of the video.