
Math Diversion Problem 96

P. Reany

October 15, 2024

Abstract

Here we use the unipodal algebra to assist in solving the problem, which
is given to us on YouTube. Although I’m referring to the series under
the name ‘olympiad’, the problems are from diverse sources as olympiads,
entrance exams, SATs, and the like.

With me, everything turns into mathematics.
— Rene Descartes

(P.S. I calculate; therefore I am.)

The YouTube video is found at:

Source: https://www.youtube.com/watch?v=Zly87p7fsqY

Title: Harvard University | Can you solve this ?

Presenter: Basic concept of Math

1 The Problem

Given the relations

6x + 6y = 42 , (1a)

x+ y = 3 , (1b)

find the values of x, y.

Remark: Remember that my emphasis is to employ the unipodal algebra to
solve a selected set of ‘olympiad’ test problems. My goal is not to make the
reader test ready: use conventional methods for your tests. For me, I consider
my job done when I’ve reached a solvable polynomial, which I’ll probably just
let the computer find the roots to it anyway.

2 The Prerequisites: The unipodal algebra

This algebra is formed as the extension of the complex numbers by the number
u, where u2 = 1, and u commutes with the complex numbers. The number u is
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said to be ‘unipotent’. The set of numbers constructed this way are the unipodal
numbers, a particular such number is called a unipode. The main conjugation
operator on unipode a is the unegation operator, written a−. It does not affect
complex numbers, but it sends every u to its negative. Hence, if a = x + yu,
where x, y are complex numbers, then a− = x− yu. Unegation distributes over
addition and multiplication.

The following are some properties that will come in handy:

u2 = 1 , (2a)

u± ≡ 1
2 (1± u) , (2b)

u2
± = u± , (2c)

u = u+ − u− , (2d)

u+u− = 0 , (2e)

u+ + u− = 1 , (2f)

uu+ = u+ , (2g)

uu− = −u− , (2h)

(u±)
− = u∓ . (2i)

You should prove (2c) – (2i). By the way, these two special unipodes u± square
to themselves. Such numbers in a ring are referred to as idempotents. In the
unipodal numbers they have no inverses. The fact that the unipodal number
system is not a field is of little concern to me. In fact, most unipodes have
inverses, so long as they are not multiples of one of the idempotents. If one
needs field elements, the scalars of the unipodal numbers comprise the field of
complex numbers.

Two often-used results are, for complex numbers w, z (which are used to
convert unipodes between the bases {1, u} and {u+, u−}):

w + zu = (w + z)u+ + (w − z)u− , (3a)

wu+ + zu− = 1
2 (w + z) + 1

2 (w − z)u . (3b)

Next, we learn how to take the ‘norm’ of a unipode. Let w be a unipode in
standard basis, given by

w = a+ bu , (4)

where a, b are complex numbers. The ‘norm’ of w is given as1

ww− = (a+ bu)(a− bu) = a2 − b2 . (5)

Now, let y be a unipode in idempotent basis, given as

y = Au+ +Bu− , (6)

1Calling ww− a ‘norm’ is rather imprecise. In accordance with terminology used by G.

Sobczyk, I will call
∣∣ww− ∣∣1/2 the (unipodal) modulus, and ww− the (unipodal) dimodulus

of w. See the Appendix.
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where A,B are complex numbers. The ‘norm’ of y is given as

yy− = (Au+ +Bu−)(Au− +Bu+) = ABu+ +ABu−

= AB(u+ + u−) = AB . (7)

The unipodal algebra has two copies of the complex numbers, one for each
component. In any true unipodal equation, the correponding coefficients across
the equal sign are equal to each other. This is similar to equating real and
imaginary components across the equal sign in the complex algebra.

When I first used the unipodal algebra to solve polynomial equations (c.
1984-5), I used the Clifford 1 algebra over the complex numbers. The ‘1’ means
one unit vector u. So, a Clifford 1 number c can be represented as

c = a+ bu , (8)

where a, b are complex numbers. Of course, u being a unit vector, then

u2 = 1 . (9)

Now, the standard basis for this space is {1, u} and the scalars are the complex
numbers. To extract the ‘scalar part’ of (8), we use the selection operator ⟨ · ⟩,
as follows:

⟨ c ⟩ = ⟨ a+ bu ⟩ = a , (10)

One can also subscript the selector with a zero for the scalar part:

⟨ c ⟩0 = ⟨ a+ bu ⟩0 = a , (11)

and with a ‘1’ for the vector part:

⟨ c ⟩1 = ⟨ a+ bu ⟩1 = bu . (12)

When I adopted the name ‘unipodal algebra’ from a paper I cowrote with two
other authors, I found a need to adopt new terminology for naming the scalar
and vector parts. Just as complex numbers are composed of a real number times
the unit ‘1’ and another real number times the unit imaginary i, the unipodal
numbers are composed of a complex number times the unit ‘1’ and another
complex number times the unipotent number u. The part of the unipode that
does not contain the unipotent factor is called the ‘complex part’ of the unipode.
The part that does contain the unipotent element factor is called the uniplex
part of the unipode.

Now, before you complain that calling the scalar part of a unipode the ‘com-
plex part’ is nonsense, I point out that in complex analysis, the nonimaginary
part is referred to as the ‘real part’. Lastly, when I say the ‘uniplex part’ in
this series of papers, I refer only to the coefficient of the nonscalar part, which
is complex only. Thus the uniplex part of unipode c = a+ bu is just b. Another
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way to think of the uniplex part of c is to take the scalar (or complex) part of
cu.

⟨ c ⟩1 = ⟨ cu ⟩ = ⟨ au+ b ⟩ = b . (13)

Thus, one must be careful when I report I’m taking the uniplex part of a unipode
(across all the papers I’ve written over the years), because at times it may
contain that factor of u and at other times not. But like I said: In this series it
will always mean only the scalar factor of the unipotent element.

Much of the algebraic power of the unipodal algebra comes from 1) it being
able to switch the presentation of a unipode between the standard basis and the
idempotent basis, the latter basis being well suited for taking powers and roots.

3 The Solution

We will soon need the following relation:

6x+y = 63 = 216 , (14)

where we used (1b).
I chose as my ‘first unipode’

a ≡ 6x + 6y u (15a)

=
[
6x + 6y

]
u+ +

[
6x − 6y

]
u− (15b)

= 42u+ + ku− (15c)

= 1
2 (42 + k) + 1

2 (42− k)u , (15d)

where we used (1a) and defined

k ≡ 6x − 6y . (16)

Then, we take a2:

a2 = 62x + 62y + 2(6x6y)u (17a)

= 62x + 62y + 2(6x+y)u (17b)

= 62x + 62y + 432u . (17c)

Now, if we set the unipotent component of a2 in (15d) equal to the corre-
sponding component of (17c), we have that

⟨ a2 ⟩1 = 1
2 (42

2 − k2) = 432 , (18)

from which we get that
k = ±30 . (19)

On using this last result with (16) and (1a), we get

x = 2, y = 1 and x = 1, y = 2 , (20)

where the two answers result from the ± sign in (19), which itself results from
the symmetry by which x and y appear in the given equations.
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4 Conclusion

Let’s take a moment to briefly take stock of the unipodal techniques we’ve used
so far in this series that have been useful (and add in one or two that might be
useful in the future):

1) Forming the ‘first unipode’ wisely.

2) Taking roots or powers, especially on unipodes in the idempotent basis.

3) ‘Flipping’ between bases.

4) Extracting the complex and/or uniplex parts across an equation.

5) Taking the ‘magnitude square’ of a unipode. For example, if X = x0 + x1u,
XX− = x2

0−x2
1, which is, of course, just a complex number. If two unipodes

are equal, their square magnitudes are equal, and you are free to calculate their
square magnitudes from either basis.

6) Comparing square magnitudes this way: Xn(X−)n = (XX−)n.

7) If A and B are equal unipodes in standard form, then
a0
a1

=
b0
b1
, but if they

are in idempotent form, then
a+
a−

=
b+
b−

.

8) A unipode can be written in standard or idempotent basis, but there is
nothing to stop us from expressing a unipode A as a combination of all four
basis elements, like this:

A = A1u+ +A2u− +A3u+A4 , (21)

where the A’s are complex numbers. The unipode A is perfectly acceptable.
Typically, we aren’t even looking for a unipode as the end result, but one of
its components. For example, let say that we wanted the A+ component of A.
There’s a short way to get it and a long way to get it. The short way is to just
multiply through by u+:

A+u+ = [A1u+ +A2u− +A3u+A4]u+ , (22)

which would give us
A+ = A1 +A3 +A4 , (23)

where I scraped off the idempotent factor. By the way, the A− component
would look like this:

A− = A2 −A3 +A4 . (24)

This is what the long way looks like:

A = A1u+ +A2u− +A3(u+ − u−) +A4(u+ + u−) (25a)

= (A1 +A3 +A4)u+ + (A2 −A3 +A4)u− . (25b)
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Furthermore, we can add to these tricks all the techniques of real and com-
plex number theory and ring theory.

5 Appendix

Here I want to present a bit more theory on the unipodal algebra. I’ve found
the need to do this because the broader the space of algebra problems I try to
solve with the unipodal algebra, the broader the unipodal theory I find I need
to draw upon. And if I have to, the reader has to as well.

Note: I will be making references to Garret Sobczyk’s book New Foundations in
Mathematics, The Geometric Concept of Number [1], particularly in the sections
he has on the unipodal and hyperbolic numbers.

Let’s begin with the algebra of the hyperbolic extrension of the real num-
bers. We start with the real numbers R and extend them by the unipotent
element u. This is denoted by R [u]. Thus, a typical hyperbolic number h in
standard form could be

h = x+ yu , (26)

where x, y are real numbers. Flipping this to idempotent form, we get

h = h+u+ + h−u− . (27)

For considerations due to symmetric 2×2 matrices, Sobczyk calls the process of
going from (26) to (27) the spectral decomposition of (26) ([1], p. 33). I suppose
we could call this the ‘spectral basis’. However, we will stick with calling it the
‘idempotent basis’.

Let w be a general unipodal number for starters. Now, if w is neither zero
nor a multiple of one of the idempotents, then it will have an inverse. The
easiest way to find the inverse of w is to cast it first into the idempotent basis,
like this:

w = w+u+ + w−u− . (28)

Then its inverse is

w−1 = w−1
+ u+ + w−1

− u− =
1

w+
u+ +

1

w−
u− . (29)

Clearly, this inverse exists because neither w+ nor w− is zero, which we know
to be the case because if either of them were zero, then w in (28) would reduce
to being a multiple of one of the idempotents, which we have disallowed.

Next, comes the important issue of defining some sort of magnitude on the
unipodal numbers, starting with the hyperbolic numbers. For hyperbolic num-
ber h, we can define the hyperbolic modulus by ([1], p. 25):

|h |h ≡
√

|hh− | , (30)
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where, of course, hh− is a real number.
Now, we can define something similar for unipodal numbers, such as for

unipodal number w, we can define the unipodal modulus by:

|w |u ≡
√
|ww− | , (31)

where, of course, ww− is a complex number, but |w |u is a real number.
Now, I know why the real numbers play such an important role in the hy-

perbolic numbers, that being its close association with the hyperbolic plane and
Lorentzian geometry. But it’s been my experience in using the unipodal algebra
to solve problems, that magnitudes of them represented by real numbers have
not played much, if any, role (at least so far). Therefore, I propose to define a
more useful notion of modulus for what I’m doing.

For unipodal number w, we can define the unipodal di-modulus by:

mod (w) = ww− , (32)

where, of course, ww− is a complex number. The meaning of ‘di-modulus’ is
this: The ‘di’ part refers to two aspects of the complex number ww−, that
being its magnitude and complex phase. And by not introducing squareroots,
we refrain from burdening the algebra with unnecessary algebraic complications.

Theorem: If w is a unipode such that

ww− = 1 , (33)

then
w−1 = w− . (34)

Proof:

Clearly, w is not zero, nor is it a multiple of an idempotent. Let’s prove this
by contradiction. Assume that

w = αu+ , (35)

where α is a complex number. Then

ww− = (αu+)(αu−) = α2u+u− = 0 . (36)

But ww− cannot be both unity and zero at the same time, hence, a contradic-
tion. Therefore w is not a multiple of u+; and by a similar argument, it is not
a multiple of u−.

Thus we know that w−1 exists. Therefore, multiplying across (33), we have
that

w−1(ww−) = (w−1w)w− = w−1 . (37)
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And thus,
w− = w−1 . (38)

Lemma: If a, b are unipodes, then

a−b− = (ab)− . (39)

Proof: Hint: Set a = a+u+ + a−u− and b = b+u+ + b−u− and work it out.

Theorem: If w is a unipode then for positive integer n

(w−)n = (wn)− . (40)

Proof: (By induction) For n = 1 there’s nothing to show.

Multiply (40) through by w−:

w−(w−)n = w−(wn)− . (41)

The LHS becomes (w−)n+1 by ordinary product-counting rules. The RHS be-
comes (wn+1)− by the previous lemma. Therefore,

(w−)n+1 = (wn+1)− . (42)

So, by assuming that the rule is true for case n, we were able to show that the
rule also works for case n+ 1. And we’re done.

Definition: A nonzero unipode that has a vanishing di-modulus is said to be
isotropic.

Review: Let c be a nonzero unipode. There are basically two ways to calculate
its di-modulus. First, when nonzero c is represented in standard form,2 as

c = c0 + c1u , (43)

then its di-modulus is given as

cc− = (c0 + c1u)(c0 − c1u) = c20 − c21 . (44)

So, then c is isotropic if c0 and c1 have the same squares. But if nonzero c is
expressed in idempotent form,3 then

c = c+u+ + c−u− , (45)

2It cannot be that both c0 and c1 are zero.
3It cannot be that both c+ and c− are zero.
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and its di-modulus is given as

cc− = (c+u+ + c−u−)(c+u− + c−u+) = c+c−(u+ + u−) = c+c− . (46)

And thus c is isotropic if either c+ or c− is zero.

Lemma:

Let a and b be distinct unipodes. Then, we can confirm by simple calculation
that4

(a− b)(a− b)− = (a− b)(a− − b−) (47a)

= aa− − ba− − ab− + bb− (47b)

= aa− − 2⟨ ba− ⟩0 + bb− . (47c)

Now, if unipode a− b is isotropic, then

aa− − 2⟨ ba− ⟩0 + bb− = 0 . (48)

We can solve for any of these three terms, but I’ll solve for the middle one:

⟨ ba− ⟩0 = 1
2 (aa

− + bb−) , (49)

which has proven itself to be useful on the unipodal battlefield.

So, what’s the application of this lemma? In the first place, this lemma
assists us in mapping unipodal information into scalar (i.e., the complex num-
bers) information, which is more likely to be useful in terms of the results we
are after.

Now, the problem solver is the one who invents the two ‘first unipodes’ a
and b in the first place. (Though in most problems I’ve solved with the aid of
the unipodal algebra, I needed only one ‘first unipode’.) And if the problem
solver is clever enough, he or she might be able to tweak a− b into an isotropic
unipode, thereby allowing the use (49). Of course, I’m not claiming that (49)
will automatically be useful, but it may be worth trying.
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