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Abstract

In this algebra word problem note, we use the Scheme to solve our fourth
attempt at what I refer to as a ‘mixed-rate problem’. In this type of
problem, two or more ‘machines’ work together at generally different rates
to produce subtotals that add to a total. Quantitative information can be
given in the problem in various forms: percentages, fractional amounts,
or by ratios. We have to know how to deal with each of them.

1 Introduction

In the first of our problems, our ‘machines’ are how two different concentrations
of water-paint mixtures are combined to produce a third water-paint mixture.
In the second problem, we need to determine the minimum number of workers
needed to accomplish making both large and small cakes, which are produced at
different rates. Problems like this one show us how different the algebra looks
when the variables are over discrete sets, rather then over continuous variables.

2 Word Problem #7.1

A particular paint needs to be thinned with water in ratio 2 parts paint to 1.5
parts water. The painter comes to you with the confession that he mixed the
two improperly, making 6 liters total in equal parts of water and paint. He asks
if this can be fixed. You study the problem algebraically for a few mintues and
determine that it can be. How?

3 Solution 7.1.1: Conceptualizing the problem

The first question we ask is, What does the process of fixing the paint mixture
look like? The solution means to add either more paint of more water until the
result is in the correct ratio. And, of course, we need to know precisely how
much of this additive we must add. We haven’t been told that we have access
to any more paint, but we will assume that we have as much paint as needed to
fix the mixture should that be the fix.
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So, do we add paint or water? Have we thinned it too much or not enough?
The first thing we need to do is learn how to convert a ratio into a fraction.
When we say that (exactly) two things A and B are mixed in ratio a : b, we
are comparing part a to part b. Say we want to know the fractional amount
of a in the total mixture a + b. Obviously, the answer is a

a+b . The actual

improperly combined mixture has the fractional amount of paint: 1
1+1 = 1

2 , but

it’s supposed to have 2
2+3/2 = 4

7 . Since 1
2 < 4

7 , we need to add paint, but how

much? That’s the kind of question that put the ‘al’ in algebra! Anyway, we’ll
let the variable x stand for the amount (in liters) of paint we need to add to the
mixture to fix it.

In the figure below, we show a ‘before and after’ process of mixing paint.
This type of graphic is going to become very famiiar to the reader, if he or she
stays with this series of notes. It’s basically a three-layer (occasionally four-
layer) approach to organizing the data for clarity. The middle layer names or
describes the objects in the boxes. The bottom layer is for quantities, either
countable or measureable, such as volumes or weights. The top layer indicates
rates of conversions, either in percentages, fractional amounts, or in ratios.

Figure 1. This graphic represents the mixing of paint in a ‘before and

after’ process. The total paint before equals the total paint after. As noted

in the figure, volumes are assumed to be conserved.

In a before-and-after process, we look for conserved quatities. By definition,
a quantity is conserved if its total amount in the before state is equal to its total
amount in its after state. The total of one or more things on the left will be
equal to the respective total of that thing on the right. In this case, both total
paint and total water are preseved. Also, the total of volume is asumed to be
conserved in the process of mixing.1 We’ve invoked the Zeroth Rule of Problem
Solving to assume that the volumes add arithmetically, and the total of 6 + x
has already been incorporated in the figure.

We begin with the conservation equation

(total amount of paint before) = (total amount of paint after) . (1)

1We know for a fact that in some cases volumes of fluids do not add arithmetically, though
the disrcepancies from naive expectation is usually so small they’re negligible. We will assume
that for our nonsceinctific use of this paint mixture, any diecrepancies are negligible.
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For our next refinement, we expand the left hand side,

(total amount of paint before) = (part of paint in original mix)

+ (part of paint added in) . (2)

From this equation we get2

(total amount of paint before) =
1

2
(6) + 1(x) = 3 + x , (3a)

where each term is a subtotal formed by taking a rate (from the top) times a
quantity (from the bottom). For the amount of paint after in mixture 2:

(total amount of paint after) =
4

7
(6 + x) . (3b)

On substituting the amounts from (3a) and (3b) into (1), we get the equation

3 + x =
4

7
(6 + x) , (4)

which has solution x = 1 in liters.
So what’s the general heuristic takeaway from this? If you identify a before-

and-after process, look for all the conserved quantities and use as many of them
as you need to solve for the unknowns you are looking for. We assumed there
were three conserved quatities in this process: paint, volumes, and water, though
we didn’t use the fact that the water was conserved. But let’s do so now.

We begin with the conservation equation for water

(total amount of water before) = (total amount of water after) . (5)

For our next refinement, we use

(total amount of water before) = (part of water in original mix)

+ (part of water in pure paint) . (6)

But there was no water in the pure paint added into the mix ( 0
1 = 0), so for

this equation we get

(total amount of water before) =
1

2
(6) + 0(x) = 3 , (7a)

Since the amount of paint in Mixture 2 is 4
7 , the amount of water in it is 3

7 ( =
1− 4

7 ), hence

(total amount of water after) =
3

7
(6 + x) . (7b)

On substituting the amounts from (7a) and (7b) into (5), we get the equation

3 =
3

7
(6 + x) , (8)

which also has solution x = 1 in liters.
2The fraction 1

1
simplifies to just 1.
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4 Word Problem #7.2

Workers are needed to help prepare 20 large cakes and 700 small calkes. Each
worker can produce either 2 large cakes per hour or 35 small cakes per hour.
What is the minimum number of workers needed to finish the job in 3 hours?

5 Solution 7.2.1: Conceptualizing the problem

We’re going to begin with a few simplifying assumptions: We will employ three
types of workers: The first kind will work exclusively on the large cakes (their
number is L). The second kind will work exclusively on the small cakes (their
number is S). And the third work on both kinds of cakes, if we need any such
dual workers. Their number is B.

So,
(total number of workers of all kinds) = L + S + B , (9)

where we stipulate that L, S, and B are nonnegative integers.
Here, we’ve encountered a rate with a difference from previous ones we’ve

seen. In this problem the subtotals are proportional both to the number of
workers and to the number of hours they work. This means that the

(# of large cakes made by ‘L’ people only) = RL · L · T , (10a)

where T is the time in hours, and RL =
2 large cakes

worker·hour
. Similarly,

(# of small cakes made by ‘S’ people only) = RS · S · T , (10b)

where, again, T is the time in hours, and RS =
35 small cakes

worker·hour
.

6 Solution Part 7.2.2: Solving the problem

We’ll show the details of solving for L, and then S will follow similarly. The
two solutions are actually independent of each other. Now, we solve (10a) for
L:

L =
⌊20 large cakes made by ‘L’ people only

RL · T

⌋
, (11)

where we have optimistically put in all 20 large cakes in the hope that the result
will be an integer and then we’ll know what L is and that’s it for the large cakes.
However, if the fraction is not an integer, the so-called floor function3 b·c will
throw away the decimal part and what remains will be our L number. For
example,

L = b5.3241c = 5 . (12)

3Technically, the floor function operates on a decimal number and returns the largest
integer less than or equal it.
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Plugging in our known values into (11), we get for L,

L =
⌊20 large cakes made by ‘L’ people only

2 · 3

⌋
=

⌊20

6

⌋
= 3 . (13)

So, how many large cakes can 3 ‘L’ workers make, each working 3 hours and
each making 2 cakes per hour? Ans: 18. That leaves 2 large cakes to be done
by the ‘B’ worker/s. Since we know that one worker can make 2 large cakes
in one hour, we could get by with just 1 ‘B’ worker if the amount of time that
worker will need for making small cakes is less than or equal to 3− 1 = 2 hours.
Let’s find out.

For S, we get the equation

L =
⌊700 small cakes made by ‘S’ people only

RS · T

⌋
=

⌊ 700

35 · 3

⌋
= 6 . (14)

So, how many large cakes can 6 ‘S’ workers make, each working 3 hours and
each making 35 cakes per hour? Ans: 630. This leaves 70 small cakes to be
made by the ‘B’ worker/s. How long does it take for one worker to make 70
small cakes, making 35 in one hour and working for 3 hours? Ans: 2 hours.

Okay, we now know the result: We need 3 workers to work fulltime on large
cakes; 6 workers to work fulltime on small cakes; and one worker, working for
one hour to make 2 large cakes and for 2 hours to make 70 small cakes.

7 Conclusion

In this note I used a bit less of the English sentences in equation form, trusting
that at this point in the series the reader can follow the presentation as is.
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