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Abstract

This paper contains my notes on Lecture Three of Leonard Susskind’s 2013 presentation on
Cosmology for his Stanford Lecture Series. These notes are meant to aid the viewer in following
Susskind’s presentation, without having to take copious notes. The fault for any inaccuracies
in these notes is strictly mine.

1 Review

Core beliefs: the universe is homogeneous, isotropic, and maybe flat. Maybe flat? Susskind wanted
to keep the question of the curvature of space open because he proposed that space may be toriordal.
What are the possible geometries of the universe if we maintain that the universe is homogeneous?

Anyway, let’s look at the line element (metric) for space, beginning with one for a circle in 3D
in flat space

ds2 = dx2 + dy2 + dz3 . (1)

Now, let’s make a shift from rectangular to polar coordinates.

Figure 1. Typical conversion of rectangular to polar coordinates.

The circle is the 1-sphere, or Ω1

ds2 = dx2 + dy2

= dr2 + r2dθ2

= dr2 + r2dΩ2
1 . (2)

We have a recursive deifnition of Ω on higher-dimensional spheres. On a unit circle, the metric
becomes just ds2 = dΩ2

1.
Next, the sphere (2-sphere) is also a homogeneous surface, being the same at every point. So,

we pick a point P on the sphere and seek to survey the sphere in a radially systematic way. How?
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By foliating the sphere as a set of concentric circles, starting at P and moving away until the last
circle of radius zero terminmates at the point antipodal to P .

Figure 2. The astronomer at r = 0 sees the universe as circles on the sphere.

The point at r = π is the farthest away we can see.

Now, the radius of each circle goes as sine of r. Hence,

ds2 = dr2 + sin2 rdθ2 = dr2 + sin2 rdΩ2
1 , (3a)

dΩ2
2 = dr2 + sin2 rdΩ2

1 , [new name for 2-sphere] (3b)

dΩ2
3 = dr2 + sin2 rdΩ2

2 . [new name for 3-sphere] (3c)

I’ve already stated Ω3, but let’s try to visualize it.

Figure 3. The astronomer at r = 0 sees the universe as concentric spheres, which

are at first expanding, but then contracting.

By the way, for flat 3-dimensional space, we have that

ds2 = dr2 + r2dΩ2
1 . (4)

We know how to embed the 1-dimensional circle into two dimensions:

x2 + y2 = 1 , (5)

for a unit circle. Similarly, for the 2-sphere in 3-dimensions:

x2 + y2 + z2 = 1 . (6)

Next, we generalize to the unit 3-sphere in 4-dimensions:

x2 + y2 + z2 + w2 = 1 . (7)

Suppose we have a telescope that allows us to determine the distance to a galaxy in flat space.
Our question is about the angle that such a galaxy subtends in the sky. For simplicity, we will
assume that all galaxies have the same diameter d.

ds2 = d2 = r2dθ2 . (8)
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Figure 4. The angle subtended of a distant galaxy of

arc length d.

From (8) we can solve for dθ:

dθ =
d

r
. (9)

Figure 5. Galaxies on the sphere. The point P
is the observer’s position in space.

From (3a) we can solve for dθ:

dθ =
d

sin r
. (10)

Hence, the galaxies near to P and Q look bigger than those in between them. A galaxy at Q would
fill the sky.

Figure 6. Stereographic Projection. The sphere has North and South Poles.

The observer is at the South Pole. Points on the sphere are projected onto

points on the plane.

In stereographic projection, circles are mapped to circles, those nearest the north pole being
magnified the most. But those nearest the south pole are distorted the least. It’s also possible to
project 3-spheres. The point at the north pole maps to a circle of infinite radius. If we imagine that
little circles on the sphere are galaxies, they get mapped to ever larger circles on the plane as the
galaxies move to the north pole.

Returning to Eq. (3b), with the substitution Ω → H, where H stands for ‘hyperbolic’, we have
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that
dH2

2 = dr2 + sinh2 rdΩ2
1 , (11)

Let’s look for a moment at the hyperbolic sine function.

sinh r ≡ er − e−r

2
. (12)

Thus, for large r, e−r → 0, and sinh r → er/2. So, in this space circles grow in size rapidly as r
goes large. On going to three-dimensions,

dH2
3 = dr2 + sinh2rdΩ2

2 , (13)

which describes the behavior of hyperbolic two-spheres.

2 Hyperboloids

Referring again to Fig. 4,
d2 = sinh2rdθ2 . (14)

Therefore,

dθ =
d

sinh r
, (15)

which, for large r becomes
dθ = 2de−r . (16)

Under these conditions, the angle subtended by this galaxy would go to zero quickly as r goes large,
while the number of galaxies must grow fast. For a model of hyperbolic space, consider Escher’s
hyperbolic disk of angels and demons.

The following equation describes an hyperboloid

T 2 − x2 − y2 = 1 , (17)

where the radius is the value on the RHS, in this case, being unity. The following figure graphs this
equation:

Figure 6. All points on this hyperboloid are equivalent. Spin the dotted line

about the τ -axis to get a cone. Spin the hyperbola likewise to get a hyperboloid.

Deriving the differential line element from the graph in Fig. 6, we get

ds2 = dx2 + dy2 − dτ2 , (18)

which makes all points on the hyperboloid equivalent. (Performs a Lorentz transformation.)
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Figure 7. The hyperboloid intersects the plane π in a circle (not shown).

Every point of the hyperboloid projects onto plane π inside this circle.

The line element for the sphere is

ds2 = a2(dr2 + sin2 rdΩ2) . (19)

The line element for the hyperbolic cone is is

ds2 = a2(dr2 + sinh2 rdΩ2) . (20)

Figure 8. It’s possible that the universe is like a huge torus.

Figure 9. Topologically, the torus can be represented by identifying the

opposite sides of a rectangle.

In special relativity, light rays are null rays.

ds2 = 0 = −dt2 + dx2 , (21)

or
dx = ±dt . (22)

Now, let’s generalize the 2-sphere.

ds2 = −dt2 + a2dΩ2
2 , (23)

where a(t) is the radius of the sphere. For an n-sphere, (25) becomes

ds2 = −dt2 + a2dΩ2
n , (24)
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Two distinct points on a sphere, subtended by angle θ, will have “distance”

D = aθ , (25)

The relative velocity of these two points due to expansion is

V = ȧθ (θ fixed) . (26)

Thus
V

D
=

ȧ

a
, (27)

and

H =
ȧ

a
, (28)

This is true for both the flat plane and the hyperboloid.

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) , (29)

which depicts a flat-world grid but the separation is a function of a(t).
In the spherical case:

ds2 = −dt2 + a2(t)dΩ2
3 , (30)

and in the hyperbolic case:
ds2 = −dt2 + a2(t)dH2

3 , (31)
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