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We begin by considering a particle constrained to move in a circle. Let this circle be in the
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This paper contains my notes on Lecture Two of Leonard Susskind’s 2013 presentation on
Advanced Quantum Mechanics for his Stanford Lecture Series. These notes are meant to aid
the viewer in following Susskind’s presentation, without having to take copious notes. This

time we begin by studying energy degeneracies in discrete systems.

Rotation symmetry

Y

plane. Now, since the particle cannot change its distance from the origin of coordinates, we can

alternatively follow the motion of the particle by means of its angle 6 from the x axis.

This particle has a wave function given by (). Now, a counterclockwise rotation does the
following

P(0) — (0 —e),

where € is a small parameter. To first order in €,
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Figure 1. The rotation of a particle in the z, y plane as viewed
in 3-space.

We'll give a name to the angular derivative depicted in (2)
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where we have included the % factor. L is knowwn as the angular momentum operator. Then (2)
becomes

i€
o) = fELzZ). (4)
Proceeding as we did for linear momentum,
Lly) =m|¢) , ()
where, by convention, m is the z component of the angular momentum.
0
—ih—1 = .
i 3 97,11 map (6)
The solution for 7 is given as '
»(0) =Mo", (7)
But we have an additional constraint that
¥(2m) = (0). (8)
Now, at § =0, ¥(0) = 1. And at § =27
eQimﬂ'/ﬁ — 1 . (9)

Hence, m/h must be an integer. Then, the quantization of angular momentum in units of 7 is
L =mh. (10)

With respect to how the energy of the revolving particle goes as it is dependent on m, we expect
that
E(—m) = E(m). (11)

counterclockwise
rotation

clockwise
rotation

Figure 2. The equality of E(—m) and E(m) is founded on the
reflection symmetry about the horizontal line, evident in this figure.

Let’s formalize this reflection symmetry by introducing a reflection operator M such that

My (0) = ¢(=0), (12)

where we can reference the 6 in Fig. 1.
Let’s consider the commutator of M and L.

[M, L™ = 2me™? . (13)



Proof: 4 ' '
MLe™? = Mme'™? = me="™m? (14)
LMe™ = Lme ™™ = —me="™7 (15)
So, although M and L both commute with the Hamiltonian, they do not commute with each
other.

Now we look at the space of two generators A, B of symmetries. This means they they both
commute with the Hamiltonian.

[A,H]=0 and [B,H]=0. (16)

If we let
[4,B]=iC, (17)

where C' is a hermitian operator, then does C' commute with H?
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Figure 3. A particle moves from point (z,y) to point (z 4 dx,y + dy)

Let (x,y) and (z + dz,y + dy) be nearby points in the xz,y plane, being of angular separation e,
which is a small angle, as seen in Fig. 3. Then

or = —ey,
oy = ex .
Then

:a—wéx—l-%

o) ox dy &

Now, given that the partial derivatives are proportional to momenta, we get

0 = —ieypy + iexpy . (19)
Finally, we get
Ly =yp. — 2py, (20a)
Ly = zp; — xp., (20b)
L. = TPy — YDz - (2OC)



These L operators are symmetries if the system is rotationally invariant, such as a particle moving
in a central force field. So, if we replace the Latin subscripts by an index 7 in these last equations,
we have that

[L;,H]=0, i=1,2,3. (21)

Now, we would like to know the values of [L;, L;] for i # j. So, we had better investigate the
commutation relations among the coordinates and momenta, first:

(z,y]=0,..., [Pzpy]=0,... . (22)

Which objects don’t commute with each other?

[z,ps] =ih, (23a)
[y,py] =ih, (23b)
[2,p2] = ih. (23¢)
But
[z;,pj] =0 when i#j. (24)
Now,

[L;mLy] = [ypz — ZPy, ZPx — xpz]
= [yp=, 2p2 | + [ 2Dy, 7p- |

= —1Yps + 1Py

=1L, (25)
By similar reasoning, we get

[L.,Ly]=1iL,. (27)

Let’s now look carefully at the eigenvalue equations of the angular momentum operators acting
on eigenstates.
L.|m)=m|m) . (28)

We want to know the possible values of m. We are going to go about answering this question quite
cleverly. First, we introduce L, and L_.

Li=L,+il,
L_=L,;—il, (29)
Then
[L+7L2] =—-Ly, (30)
[L_,L.]= L_. (31)

Now, suppose the m in (28) is a known value. We can use this to find another eigenvalue. From
(30) we get
[Ly.La]|m) = (LyLs — L.Ly) |m) = —Ly |m) . (32)

Then
LyL.|m) —L.Ly|m) =—Ly|m) . (33)



And then
(m+1)Ly|m) = L.Ly|m) |

Therefore, L1 |m) is an eigenvector of operator L, with eigenvalue m + 1. Similarly,

(m—1)L_|m)=L,L_|m) .

We now have a procedure to elicit a spectrum of eigenvalue, given a single eigenvalue.

Next, we operate with the Hamiltonian
H|m)=FE|m) .
But, we now know that L, |m) is also an eigenvector of L, so
HL,|m) =Ly H|m)=FELy|m) .

But we can rewrite this as
Him+1)=E|m+1) .

(37)

(38)

But this energy E is the same energy of Eq. (36), which means that we’ve arrived at a degeneracy:

multiple states have the same energy.

“This is the idea of degeneracies following from symmetry, when symmetries don’t commute

with each other.”

Our procedure is the quantum analogue of rotating the L, axis in 3-space and thereby manifesting

a degeneracy.

We’ll be meeting raising and lowering operators in other places in quantum theory.



