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Abstract

This paper contains my notes on Lecture Four of Leonard Susskind’s 2013 presentation on
Advanced Quantum Mechanics for his Stanford Lecture Series. These notes are meant to aid
the viewer in following Susskind’s presentation, without having to take copious notes.

1 Solving for eigenstates of the harmonic oscillator

Returning to the Hamiltonian for an oscillator in 1-D, we have

H =
P 2

2
+
ω2

2
x2 . (1)

Now we switch to the quantum mechanical viewpoint. Let’s factor this equation:

H =
P 2

2
+
ω2x2

2

= 1
2 (P + iωx)(P − iωx)− iω

2
[x, P ]

=
1

2
(P + iωx)(P − iωx)− iω

2
i

=
1

2
(P + iωx)(P − iωx) +

ω

2
. (2)

We can ignore the constant term and do some manipulation, to get

H = ω
(P + iωx)√

2ω

(P − iωx)√
2ω

. (3)

Note: I will repeat some of the foundational equations that were in the last lecture for use here as
well.

Let’s introduce some names here:

a+ =
(P + iωx)√

2ω
, a− =

(P − iωx)√
2ω

. (4)

These two operators are hermitian conjugates of each other. So, with these symbolic simplifications,
we can write

H = ωa+a− . (5)
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From the last time, we found that the commutator of a+ and a− is:

[ a−, a+ ] = 1 . (6)

It is found to be convenient to give a name to a+a−.

N ≡ a+a− . (7)

N has eigenvalues of 0, 1, 2, . . ..
The Hamiltonian then becomes

H = ω(N + 1
2 ) . (8)

When N = 0, H = 1
2ω is the ground state energy.

So, let |n ⟩ be an eigenstate of N , with equation

N |n ⟩= n |n ⟩ , (9)

or
a+a− |n ⟩= n |n ⟩ . (10)

To aid us in understanding how to proceed,

(a−a+ − a+a−) |n ⟩= |n ⟩ . (11)

Using (9) and (10), we get
(a−a+ − n) |n ⟩= |n ⟩ , (12)

which becomes
a−a+ |n ⟩= (n+ 1) |n ⟩ . (13)

Multiplying this through by a+, we get

a+a−a+ |n ⟩= (n+ 1)a+ |n ⟩ . (14)

Therefore,
Na+ |n ⟩= (n+ 1)a+ |n ⟩ . (15)

But, on being consistent with (9), we have that

N |n+ 1 ⟩= (n+ 1) |n+ 1 ⟩ . (16)

So, by comparing these last two equation, we must demand that

a+ |n ⟩= |n+ 1 ⟩ . (17)

Hence, a+ is a raising operator, and, by analogy, a− is a lowering operator. That is,

a− |n ⟩= |n− 1 ⟩ . (18)

By the way, the Schrödinger equation for this problem is

− 1
2

d2

dx2
ψ(x) + ω2x2ψ(x) = Eψ(x) . (19)

Now, since the operator N is positive definite, it cannot have negative eigenvalues, therefore, it
must have a least eigenvalue that is at worst zero. The symbol | 0 ⟩ is used to represent this state of
least eigenvalue. This state is referred to as the ground state.
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Operationally, the ground state is characterized by

a− | 0 ⟩= 0 . (20)

It follows immediately that
N | 0 ⟩= 0 . (21)

Question: Can we find the ground state wave function without resorting back to the Schrödinger
equation?

Yes, by referring to Eq. (20), where

a− ∼ P − iωx , (22)

which converts to
(P − iωx)ψ = 0 . (23)

Or (
− i

d

dx
− iωx

)
ψ = 0 . (24)

And, on cancelling the i’s we get ( d
dx

+ ωx
)
ψ = 0 . (25)

To integrate, try the ansatz ψ(x) = ef(x). Then,

d

dx
ef(x) = −ωxef(x) , (26)

or
f ′(x) = −ωx . (27)

Integrating this, we get
f(x) = − 1

2ωx
2 , (28)

where we can ignore the constant of integration, as it will only affect ψ as a constant multiplicative
factor. Hence,

ψ0(x) = e−
1
2ωx2

, (29)

which is a gaussian function.

Figure 1. The ground state solution to the Schrödinger equation

we found to be a gaussian function.
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If we plugged our solution for the ground state function into (19), we would discover that the
corresponding energy value would be 1/2, which we already knew from (8).

Now we try to find the first excited state | 1 ⟩.

| 1 ⟩= a+ | 0 ⟩ , (30)

or
| 1 ⟩= (P + iωx)ψ0(x) , (31)

or

ψ1(x) =
(
− i

d

dx
+ iωx

)
e−

1
2ωx2

= 2iωxe−
1
2ωx2

. (32)

Figure 2. The first excited state solution to the Schrödinger equation.

We saw that the ground state had no nodes, and the first excited state has a single node. And
so it goes.

2 Intrinsic spin

Particles with spin 1/2 have the property of angular momentum, as though the particle is spinning
about an axis, though most physicists do not take this interpretation literally.

What characterizes a particle’s angular momentum? First, that there are three components of
it, which we’ll associate them with the three directions of cartesian space.

Now,

[Lx, Ly ] = iℏLz , (33)

[Ly, Lz ] = iℏLx , (34)

[Lz, Lx ] = iℏLy . (35)

Now, let’s take a look at the Pauli matrices, beginning with σz:

σz =

(
1 0
0 −1

)
. (36)

This matrix is rather special among the Pauli matrices, for, besides the identity matrix, it is the only
other one that is diagonal. The eigenvalues of this matrix are +1 and −1, representing, respectively,
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up and down. The other Pauli matrices are

σx =

(
0 1
1 0

)
, σy =

(
0 i
−i 0

)
. (37)

So, what are the commutation relations of these matrices? Let’s try out σz with σx:

σzσx =

(
1 0
0 −1

)(
0 1
1 0

)
=

(
0 1
−1 0

)
= iσy . (38)

And

σxσz =

(
0 1
1 0

)(
1 0
0 −1

)
=

(
0 −1
1 0

)
= −iσy . (39)

Therefore,
[σz, σx ] = σzσx − σxσz = 2iσy . (40)

We can get rid of this factor of 2 by defining a new variable s such that

si ≡ 1
2σi , for i = 1, 2, 3 . (41)

Therefore,
[ sz, sx ] = iℏsy , (42)

and so on for the other two spin matrices.
Anyway, the upshot of this analysis is that this spin acts analogously to linear momentum, hence,

it is some form of angular momentum.
So, what are the eigenvalues of sz? Since

sz =

(
1
2 0
0 − 1

2

)
, (43)

its eigenvalues are + 1
2 and − 1

2 .
How do we relate the angular momentum of a particle (relative to its CM motion) and its intrinsic

angular momentum, or spin? We use the symbol J:

J = L+ s . (44)

Now,
L2 = ℓ(ℓ+ 1) . (45)

For each ℓ there are 2ℓ = 1 states, but there are additional degeneracies.

Figure 3. Extra degeneracies in the hydrogen atom.
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3 The Pauli Exclusion Principle

In early quantum history there was a conundrum to solve: Observations on the energy states of
atomic electrons showed that it is not possible for all the electrons in multi-electron atoms to inhabit
the lowest possible energy level. So, the question is, Why? Wolfgang Pauli proposed a technical
solution that, although it doesn’t explain why this cannot happen, it does give a specific rule to
exclude it from happening. The Pauli Exclusion Principle can be states as

It is not possible in a quantum system that any two fermions (spin- 1
2 particles) of the

exact same quantum numbers can share the same restricted space. Any two quantum
particles that are in the same space and have the same quantum numbers are said to be
in the same ‘state’. Bosons are the exceptions to this rule:1 They may share the same
space and quantum numbers.

If this is true, then the two particles that cohabit the lowest energy level of helium, for example,
must have different quantum numbers in at least one value. That quantum number of distinction
must be their spin numbers: One must be + 1

2 and the other − 1
2 . These two electron-spin states are

respectively referred to as ‘up’ and ‘down’.
To look deeper into the role that particle indistinguishability plays in quantum mechanics,

Susskind invented an operator that acts on wave function and produces other wave function. He
called this operator the ‘swap’ operator S, which acts according to

S |x1x2 ⟩ , (46)

where by |x1x2 ⟩we mean a particle at position 1, and a particle at position 2, reading the arguments
from left to right, as usual. Hence,

S |x1x2 ⟩= |x2x1 ⟩ . (47)

Reasonably, S2 = 1, the identity operation. Now, S is unitary, meaning that it doesn’t change
probabilities. Now, since S2 = 1, then

S = ±1 . (48)

We end the lecture here, to pick it up next time at this point.

1Bosons are particles of integer spin numbers.

6


