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Abstract

This paper contains my notes on Lecture Five of Leonard Susskind’s 2013 presentation on
Advanced Quantum Mechanics for his Stanford Lecture Series. These notes are meant to aid
the viewer in following Susskind’s presentation, without having to take copious notes.

1 A bit of review

The electron is a spin- 1
2 particle and it obeys the Pauli Exclusion Principle. We can put two electrons

into the ground state of the Helium atom, one spin up, the other spin down, and that satsifies the
Pauli Exclusion Principle. (By the way, these two electrons are entangled.) In the Lithium atom,
two electrons fill the ground state and a third electron must be placed in a higher state.

Half-integer spin particles always obey the Pauli Exclusion Principle. The integer-spin
particles never obey it.

We can declare an orthonormal family of states by this notation: |x1 x2 x3 ⟩. Now, the wave function
of the state described is the inner product of the vector |x1 x2 x3 ⟩ with the state vector |ψ ⟩:

⟨x1 . . . xn | ψ ⟩ = ψ(x1 . . . xn) . (1)

So, to get the probability that particle 1 is at x1, and particle 2 is at x2, continued all the way up
to particle n at xn, we complex square this last expression: ψ∗(x1, . . . , xn)ψ(x1, . . . , xn).

Ignoring spin, we investigate otherwise identical particles, such as electrons. To date, experiment
suggests that we declare that a wave function under any permutation is invariant. In other words,
let P be any permutation of indices in (1), then

P |x1, . . . , xn ⟩= |xi1 , . . . , xin ⟩= eiϕ |x1, . . . , xn ⟩ , (2)

where ϕ is a fixed real value. The complex number eiϕ is called a phase and it will not affect the
probabilities because it will be cancelled out by the additional factor of eiϕ∗ = e−iϕ when calculating
the probability..

Let’s look at the case of just two particles.

|x1, x2 ⟩= eiϕ |x2, x1 ⟩ . (3)

But if we interchange the particles once more, we must arrive at the original state. From this insight,
we conclude that

|x1, x2 ⟩= ± |x2, x1 ⟩ , (4)
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where the + is for bosons and the − is for fermions. On going from state vectors to wave functions,
we have that

⟨x1, x2 | ψ ⟩ = ψ(x1, x2) , (5a)

⟨x2, x1 | ψ ⟩ = ψ(x2, x1) . (5b)

Hence, the property of the state vectors becomes the property of the corresponding wave functions.

ψ(x1, x2) = ±ψ(x2, x1) . (6)

Imagine that we place two bosons in the same state ψ0

ψ0(x1)ψ0(x2) = ψ0(x2)ψ0(x1) , (7)

which shows that the interchange of the particles is symmetric.
Next, let’s put bosons in different states ψ0 and ψ1:

ψ0(x1)ψ1(x2) −→ ψ0(x2)ψ1(x1) , (8)

where we have no knowledge how to compare these two two-particle states. However, we can rectify
this state on nonknowledge by creating a wavefunction that is symmetric under interchange of
particles, namely,

ψ0(x1)ψ1(x2) + ψ0(x2)ψ1(x1) . (9)

Clearly, this expression is invariant under interchange of bosons 1 and 2.
So, it should be obvious that to construct a wave function that is invariant for interchange of

fermions, we only need to proffer a similar wavefunction, but this one much change sign under
exchange of particles.

ψ0(x1)ψ1(x2)− ψ0(x2)ψ1(x1) . (10)

So, what happens if the particles in state 2 are moved to state 1? In the case of the symmetric
wave function we get

2ψ0(x1)ψ0(x2) , (11)

which is fine for bosons, and in the case of the antisymmetric combination, we get

ψ0(x1)ψ0(x2)− ψ0(x2)ψ0(x1) = 0 , (12)

which for fermions means that this combined state is not permissible.
We should add the spin state of the particle to its state information, such as for particle 1,

ψ(x1) −→ ψ(x1, σz) , (13)

where σz will take the value of either ±1. For the wave function of a multiparticle system, we get

ψ(x1σz1, x2σz2, . . .) . (14)

So, now what happens when we exchange, say, the first two components? Well, for bosons, the wave
function stays the same, but for fermions, it changes sign.

How does the total angular momentum J affect the wave function?

J is the generator of rotations, so when it acts on a state, it differentiates it with respect to an
angle. Specifically,

Jz |ψ ⟩= −i ∂
∂θ

|ψ ⟩ , (15)
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which is a rotation about the z-axis. The eigenvalue version of this is

−i ∂
∂θ

|ψ ⟩= m |ψ ⟩ , (16)

which has solution
|ψ(θ) ⟩= eimθ |ψ0 ⟩ . (17)

When m is an integer and we rotate the wavefunction by 2π, we return to the start. However,
if m is a half-integer, when we rotate by 2π, the wave function changes sign.

Note: Experiments involving coffee and dress belts are left to the reader.

In Fig. 1, we find the setup for an experiment on an electron in a prepared state of spin up,
held in place by a magnetic field in the cavity. Then the box will be rotated in a full circle about
an axis through the box. (The reason to rotate the box slowly is to ensure that the magnetic field
continuously aligns the electron spin with the magnetic field.) We will then compare the interference
results of this experiment with a similar experiment in which the electron box is not rotated prior
to the release of the electron. The results of both experiments should be statistically the same.

Figure 1. The electron is placed within a cavity in prepared state as

spin up. Then the cavity/box is slowly rotated by 2π about an axis

through the box.

Fig. 2 shows an experiment in which the incoming electron is forced through a beam splitter,
which has the effect of forcing part of the electron’s wave function into the upper box, and the rest
into the lower box – in other words, a superposition. Both boxes have magnetic fields points up in
them. Now, before we release the electron by opening up both boxes, we will rotate one of them by
2π, as we had done before. The combined wave function before the rotation is ψ1 + ψ2, whereas,
the waved function after the rotation is ψ1 − ψ2. In this case, the interference pattern will be very
different between the two of them. The upshot of this is that we can by experimental means detect
the rotation of an electron’s wave function by 2π.
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Figure 2. The electron wavefunction is split into two parts and placed into

the two boxes. One of the boxes has wave function ψ1 and the other has

wave function ψ2. The superposition is that the electron is in both boxes

at the same time.
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