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Abstract

This paper contains my notes on Lecture Six of Leonard Susskind’s 2013 presentation on Ad-
vanced Quantum Mechanics for his Stanford Lecture Series. These notes are meant to aid the
viewer in following Susskind’s presentation, without having to take copious notes. This time
we get going on quantum field theory.

1 Harmonic Oscillator Review

The harmonic oscillator is the central concept and tool of the subject as we shall learn it. For the
moment, we’ll concentrate on a single harmonic oscillator, especially on the operators of a+ and
a−, the former operator raises the level of the state, and the latter decreases it. If there is a ground
state | 0 ⟩, then

a− | 0 ⟩= 0 . (1)

In other words, the | 0 ⟩ state is “annihilated” by the a− operator. At some point, we’ll refer to a+

and a− as “creation” and “annihilation” operators, respectively.
Recall that:

a+ =
(P + iωx)√

2ω
, a− =

(P − iωx)√
2ω

. (2)

These two operators are hermitian conjugates of each other. So, with these symbolic simplifications,
we can write

H = ωa+a− , (3)

where we have ignored the constant term, which relates to the ground state energy.1

It is found to be convenient to give a name to a+a−, namely

N ≡ a+a− . (4)

So, let |n ⟩ be an eigenstate of N , with equation

N |n ⟩= n |n ⟩ , (5)

where n is an eigenvalue, or rather, an observable value.
Let’s find the commutator of a− and a+:

[ a−, a+ ] = 1 . (6)

1As always, the presence of ℏ is ghostly, appearing and disappearing randomly.
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Now, we undertake the problem of the many harmonic oscillator. A useful model of this coupled
oscillation problem is to imagine the many vibrating modes of a single string, each with its own
frequency.

So, switching to the multimode case, we need to label the operators, etc.

Ni ≡ a+i a
−
i . (7)

So, let |ni ⟩ be an eigenstate of Ni, with equation

Ni |ni ⟩= ni |ni ⟩ . (8)

Hence, the commutator of a−i and a+i :

[ a−i , a
+
i ] = 1 . (9)

But, since the operators of one subsystem are independent of the operators of any other, we need
to write

[ a−i , a
+
j ] = δij . (10a)

Add to this:
[ a−i , a

−
j ] = 0 , (10b)

[ a+i , a
+
j ] = 0 . (10c)

Therefore, the Hamiltonian becomes

H =
∑
i

ℏωia
+
i a

−
i =

∑
i

ℏωiNi . (11)

Operator Ni will be called an “occupation number.” We’ll label the states by their occupation
numbers, |ni ⟩

We need a symbolism to represent multiple oscillators of a system.

|n1 n2 n3 . . . ⟩ . (12)

One model of this system would be an idealized violin string, which can oscillate in multiple modes
(frequencies) at the same time. These are called “harmonics.”

From a previous lecture, we have the result

a−a+ |n ⟩= (n+ 1) |n ⟩ , (13)

which we can use to calculate αn in

a+ |n ⟩= αn |n+ 1 ⟩ , (14)

which will give us the correct adjustment factor.
We begin with the requirement that the states be nornmalized according to

⟨n | m ⟩ = δnm . (15)

Thus, on multiplying (14) through by its hermitian conjugate, we have

( ⟨n | a−)(a+ |n ⟩) = ⟨n | (a−a+) |n ⟩= ( ⟨n+ 1 |α∗
n)(αn |n+ 1 ⟩) , (16)

where
⟨n | a− = ( a+ |n ⟩ )† = (αn |n+ 1 ⟩ )† = ⟨n+ 1 |α∗

n . (17)
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Employing (13),
(n+ 1) ⟨n | n ⟩ = |αn |2 ⟨n+ 1 | n+ 1 ⟩ . (18)

On applying our normalization constraint (15), we get

(n+ 1) = |αn |2 . (19)

And, assuming that αn is real (given that n is an integer), we get

αn = (n+ 1)1/2 . (20)

Therefore, (14) becomes
a+ |n ⟩= (n+ 1)1/2 |n+ 1 ⟩ . (21)

By similar reasoning, we get
a− |n ⟩= n1/2 |n− 1 ⟩ . (22)

Naturally, when we hit our multistate vector by the creation operator a+i , we get

a+i |n1 n2 n3 . . . ⟩= (ni + 1)1/2 |n1 n2 . . . , ni + 1, . . . ⟩ . (23)

Thus, it has the effect of changing only the ith occupation number and multiplying by the appro-
priate coefficient.

2 Quantum Fields, Intro

So, let’s review some quantum mechanics, starting with the wave function ψ(x), where x can repre-
sent a point in n-dimensional space. Now, in some respects ψ(x) is a field, since it has values over
the space of interest. However, it’s not a function we can measure experimentally. We conclude
that ψ(x) is not an observable.

Now consider that our system is two particles, one at point x, the other at point y, then our
representation of it in QM is:

ψ = ψ(x y) . (24)

If we up the count to 15, say, then we write

ψ = ψ(x1, . . . , x15) . (25)

But in both of these cases, the number of particles is fixed.
Now, to switch our view over to that of quantum field theory, we must make some major changes.

First, we’ll represent our quantum field by Ψ. Second, we insist that Ψ be an observable,2 which we
can enforce by restricting it to represent those things that already can be measured by experiment,
at least as a start. By the way, the fact that Ψ is an observable implies that it is an operator on the
space of states. Third, Ψ is a function of only one coordinate. Forth, Ψ describes systems of any
number of particles, and can allow for a change of number of particles in a given situation. The old
QM could not do that.

Note: At this point, I skipped some material that is more or less review.

So, referring back to |n1 n2 n3 . . . ⟩, we regard these n’s as indicating the number of particles in
a given state. That is, ni indicates the ith state with ni particles in that state.

2Actually, we will need to manipulate this function to get a valid observable out of it.
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Now we introduce the notion of the “vacuum” state, which is the state that is annihilated by
the action of any annihilating operator. Logically, we should represent this state by the vector
| 0 0 0 . . . ⟩, hence, for arbitrary annihilation operator a−j

a−j | 0 0 0 . . . ⟩= 0 . (26)

Anyway, it’s clear that in that vacuum state, none of the states is occupied.
Now, each state has an associated energy, which we could label as Ei, but we won’t. Instead,

we’ll express it as either ωi or ℏωi. So, how should we represent the energy of a system in terms of
creation-annihilation operators?

E =
∑
i

niωi , (27)

which, if we switch over to the operator form of this equation, we get

E =
∑
i

ωiNi =
∑
i

ωia
†
iai , (28)

where we have made the standard notations swaps a+ → a† and a− → a. (However, we will not
make this switch at this time.) And, once again, we are ignoring the ground-state energy constant
term.

Further comments on QFT:

QFT is a bookkeeping device to manage the multi-particles systems allowable by the theory.
Anyway, for the time being, this is the way we will think of them.

Now, the space of vectors denoted by |n1 n2 . . . , ni + 1, . . . ⟩ was named after the Russian physi-
cist V. A. Fock. The main point of which is to allow for a variable number of particles in the
system.

Next, we come to the formal definition of the operator Ψ(x)3:

Ψ(x) =
∑
i

a−i ψi(x) , (29)

where the ψi(x) are typically sines and cosines. (It seems that we have gone back to the old way
of representing the annihilation operators.) If the ψ’s represent momentum eigenstates of sines and
cosines, then the a− oerators would resemble the coefficients that occur in Fourier analysis. Note
that these ψi(x)’s are functions defined at a point.

The hermitian conjugate of (29) is, of course,

Ψ†(x) =
∑
i

a+i ψ
∗
i (x) . (30)

Now, when Ψ(x) hits the vacuum state, it annihilates it. But things are more interesting when
Ψ†(x) hits it. In that case, we get a new particle in a superposition of states.

To continue, we consider old QM of a single particle. It has a complete set of states given by
|x ⟩. Therefore, we can construct an identity operator:∑

x

|x ⟩ ⟨x | = 1 . (31)

3The great value of this definition will become obvious as we go along. What it allows us to do is to put our most
important operator equations in their simplest possible forms.
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We can also write down for the energy eigenstates:∑
i

| i ⟩ ⟨ i | = 1 , (32)

again, for a single particle, and each i corresponds to a ψi(x). Obviously, then, applying this
operator to a particle at point x, yields∑

i

| i ⟩ ⟨ i | x ⟩ = |x ⟩ , (33)

where ⟨ i | x ⟩ is the wave function ψ∗
i (x), hence, we get∑

i

ψ∗
i (x) | i ⟩= |x ⟩ . (34)

Now, we get a bit fancy. We replace | i ⟩ by

| i ⟩= a+i | 0 ⟩ . (35)

As a result, we get write (34) as ∑
i

ψ∗
i (x) a

+
i | 0 ⟩= |x ⟩ . (36)

But, because of (30), we can write
Ψ†(x) | 0 ⟩= |x ⟩ . (37)

Hence – drum roll, please – Ψ†(x) is an operator that creates a particle (in the energy eigenstates)
at point x! By the way, we refer to Ψ†(x) as a “field operator.” On the other hand, Ψ(x) will delete
a particle at point x if there’s a particle already there.

Next, we generalize. To place a particle at x and a particle at y, we write

Ψ†(y)Ψ†(x) | 0 ⟩= | y x ⟩ . (38)

But, since these creation operators commute, we also have that

Ψ†(x)Ψ†(y) | 0 ⟩= |x y ⟩= | y x ⟩ . (39)

This works because our particles at this point are exclusively bosons. The upshot of this demon-
stration is that we have made a connection between particles and fields: Apply the fields to the
ground state, and out comes a particle. Let there be bosons!
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