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Abstract

This paper contains my notes on Lecture Seven of Leonard Susskind’s 2013 presentation on
Advanced Quantum Mechanics for his Stanford Lecture Series. These notes are meant to aid
the viewer in following Susskind’s presentation, without having to take copious notes.

1 Review

We begin this lecture with the probability that a particle will be found at point x as given by the
old QM:

ψ∗(x)ψ(x) , (1)

which is, of course, a probability density. And we know that if ψ(x) is normalized, that∫ ∞

−∞
ψ∗(x)ψ(x) = 1 . (2)

And as a conversion between bra-ket notation and wave functions, we have that

⟨x | ψ ⟩ = ψ(x) . (3)

What we want to do now is to introduce a complete set of basis vectors. In the case of a particle
in a box potential, we get a full set of energy eigenstates ψi(x), which are sine functions that are
characterized by their number of nodes. Then,∫ ∞

−∞
ψ∗
i (x)ψj(x) = δij . (4)

We can also write down for the energy eigenstates:∑
i

| i ⟩ ⟨ i | = 1 . (5)

So, by multiplying on the right by |x ⟩ and on the left by ⟨ y |, we get∑
i

⟨ y | i ⟩ ⟨ i | x ⟩ = ⟨ y | x ⟩ , (6)

which simplifies to ∑
i

ψi(y)ψ
∗
i (x) = δ(x− y) . (7)
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All we have asked of ψi(x) is that they are a complete set of orthonormal basis vectors.
For a multi-particle system, we have already seen the notation

|n1 n2 n3 . . . ⟩ , (8)

where the basis of states are the ni’s and they are called the “occupation numbers.” In order to
raise or lower these number, we associate to each i an “oscillator.” These are the by now familiar
creation/annihilation operators a+i and a−i .

At this point, we make the conversion to the alternative convention:

a+i −→ a†i and a−i −→ ai . (9)

Next, we come to the formal definition of the operator Ψ(x)1:

Ψ(x) =
∑
i

aiψi(x) , (10)

where the ψi(x) are typically sines and cosines. The hermitian conjugate of (10) is, of course,

Ψ†(x) =
∑
i

a†iψ
∗
i (x) . (11)

Now we introduce the notion of the “vacuum” state, which is the state that is annihilated by
the action of any annihilating operator. Logically, we should represent this state by the vector
| 0 0 0 . . . ⟩,

| vacuum ⟩= | 0 ⟩= | 0 0 0 . . . ⟩ . (12)

Hence, for arbitrary annihilation operator a−j :

a−j | 0 0 0 . . . ⟩= 0 . (13)

To continue, we consider old QM of a single particle. It has a complete set of states given by
| i ⟩. We can also write down for the energy eigenstates:2∑

i

| i ⟩ ⟨ i | = 1 , (14)

again, for a single particle, and each i corresponds to a ψi(x). Obviously, then, applying this
operator to a particle at point x, yields

|x ⟩=
∑
i

| i ⟩ ⟨ i | x ⟩ , (15)

where ⟨ i | x ⟩ is the wave function ψ∗
i (x), hence, we get

|x ⟩=
∑
i

ψ∗
i (x) | i ⟩ . (16)

Now, we get a bit fancy. We replace | i ⟩ by

| i ⟩= a†i | 0 ⟩ . (17)

1The great value of this definition will become obvious as we go along. What it allows us to do is to put our most
important operator equations in their simplest possible forms.

2This identity has the special name “the resolution of the identity.”
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As a result, we get write (16) as

|x ⟩=
∑
i

ψ∗
i (x) a

†
i | 0 ⟩ . (18)

But, because of (11), we can write
|x ⟩= Ψ†(x) | 0 ⟩ . (19)

Hence, Ψ†(x) is an operator that creates a particle (in the energy eigenstates) at point x! By the
way, we refer to Ψ†(x) as a “field operator.” On the other hand, Ψ(x) will delete a particle at point
x if there’s a particle already there.

2 New Material

Consider the integral ∫
dxΨ†(x)Ψ(x) . (20)

What can we say about it? One thing we can say is that it is hermitian because Ψ†(x)Ψ(x) is
hermitian. Now, ∫

dxΨ†(x)Ψ(x) =

∫
dx

∑
i,j

a†iψ
∗
i (x) ajψj(x)

=
∑
i,j

a†i aj δij (using (4))

=
∑
i

a†i ai

=
∑
i

Ni . (21)

Of course, we recognize this sum as the total number of particles in the system. But, does this
integral blow up? It might, because there might be an infinite number of energy levels. On the
other hand, if the total engery of the system is capped (which is the physical situation), then that
finite energy cannot be divided into an infinite number of particles, as least so long as each particle
as some energy. Anyway, it makes sense to regard Ψ†(x)Ψ(x) as the density of particles.

Next, we wish to examine an approximation in which the density of particles is small enough to
warrant making the assumption that they will not interact appreciably with each other. Hence, the
total energy of the system is the simple sum of the individual particle energies. (The particles are
considered as ‘free’.) Therefore,

E =
∑
i

Niωi =
∑
i

a†i aiωi , (22)

where we have left off the ℏ factor.
Now, we investigate the action of the Hamiltonian on ψi:

Hψi = ωiψi . (23)

On expanding for H, we get ( P 2

2m
+ V (x)

)
ψi = ωiψi . (24)

But, since P = −i∂/∂x −→ −i∇. Then,(−∇2

2m
+ V (x)

)
ψi = ωiψi . (25)

3



Note that the expectation value of the energy can be written as∫
ψ∗(x)

(−∇2

2m
+ V (x)

)
ψ(x) = ⟨ψ(x) |H | ψ(x)⟩ . (26)

Now let’s upgrade the ψ in (26) to Ψ:∫
Ψ†(x)

(
− ∇2

2m
+ V (x)

)
Ψ(x) , (27)

and so, ∫
Ψ†(x)

(
− ∇2

2m
+ V (x)

)
Ψ(x) =

∫
dx

∑
i,j

a†iψ
∗
i (x)

(
− ∇2

2m
+ V (x)

)
ajψj(x)

=
∑
i,j

a†iaj

∫
dxψ∗

i (x)
(
− ∇2

2m
+ V (x)

)
ψj(x)

=
∑
i,j

a†iaj

∫
dxψ∗

i (x)ωjψj(x)

=
∑
i,j

a†i ajωjδij (using (4))

=
∑
i

ωia
†
iai

=
∑
i

ωiNi . (28)
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