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Abstract

This paper contains my notes on Lecture Nine of Leonard Susskind’s 2013 presentation on
Advanced Quantum Mechanics for his Stanford Lecture Series. These notes are meant to aid
the viewer in following Susskind’s presentation, without having to take copious notes.

1 Hamiltonian

The Hamiltonian in the field operators is given as

H= /d:c \Iﬁ(x)( ¥V, V(:c))\l/(x)

o
:/dw[‘lﬁ(m)(*%)‘l’(w)+V($)‘PT($)‘I’($)], (1)

where —V?2/2m is the kinetic energy term and V(x) is the potential energy term. The term
V(z)WT(z)¥(x) counts the number of particles at point x, assigning each of them the potential
energy V(x).

Now, let’s reconfigure (1) to allow for only a constant potential term (which applies no force on
the system):

1= [ o[ (2)(-5)¥(@) + ¥ (@) (o). 2)

Question: How does the second term now relate to the energy? Ans: It merely counts the number
of particles — at a certain energy. But this is not the kinetic energy, as that is contained in the first
term. Thus, we’ll assign it to the rest mass of each particle, as such:

2
H= /dx[\I!T(m)(—:—m)\Il(x)+m02\IJT(x)\I!(x)]. (3)

The role of the Hamiltonian is to update the state of the system. Let’s indicate the state of the
system at time ¢ as | ¢(t) ). For small e,

[p(t+e)) = (1 —ieH)[p(t)) = |@(t)) — ieH [p(t)) - (4)

We can think of the function of the Hamiltonian as updating the wavefunction continuously in time.
But what happens when the Hamiltonian acts on a definite momentum state? In the special case
of momentum conservation, of course, it won’t change it.



Let’s check this claim. For starters, let’s use a Fourier transform to rewrite (3) in the momentum
basis.! For the annihilation operator, we have

1 ~ .
V) = <= [T, (5)
and for the creation operator, we have?
T ! Al —iqz
Ui(z) = Nors dg ¥ (g)e """ . (6)

One step we need to take is to rewrite mc?¥f(2)¥(z) in terms of momentum variables.

H /dmch\IJT(x)\I!(:E)

% / da me? / dq ' (q)e" / dp B (p)ein
% / do / dq / dp &' ()T (p)me2eitr-0e
:/dq/dp\T/T(Q)\T/(p)mczts(p—Q)

:/@F@m@m? (7)

Thus, we found that for the integral to work, p and ¢ must be equal. As a result, \Tl(p) will remove

a particle of momentum p, but \T!T(p) will bring it right back, leaving the number of particles at
momentum p conserved.

Suppose now that we generalize the mass term in Equation (3) to
me® (Ui (2) 4% (z)c + VU (2)p¥(2)p) . (8)

Then we’d get in the integral (as an example of a more complicated system)

~1~ ~ T ~ . o
/~--/dxdpAdedchquc2(\Il (P)a¥(q)c + ¥ (p)B\I/(q)D)eZ(PA"FPB)ze i(gc+qp)z (9)
p’s go with the annihilation operators, and ¢’s go with the creation operators. Integrating over the
x, we get

~1t ~ T ~
/-“/dpAdedchqucQ(\I’ (P)a¥(g)c +¥ (p)B¥(9)p)d(pa+ P —q9c —qp).  (10)
We will interpret this delta function as meaning that the sum of the p’s must equal the sum of the
¢’s. In other words, the sum of the momentum that is removed is equal to the sum of the momentum

that is put back in.

Now it’s time to look at the kinetic energy term in the Hamiltonian.

—V2Ui(z) = —VQ\/%/dq al(q)e "% = \/% /dq al(q)gPe " (11)

1We will write this equation as if p is 1-dimensional, but it works for higher dimensions as well.
?Note: there is a factor of 1/4/27 for each dimension of space.



Then, with momentum conserved, the total kinetic energy is given by
~~|— ~ p2
dp¥ (p)¥(p)—. 12
[av¥ i 2 (12)

Now, since [ dp \TIT(p)\TI(p) counts the number of particles, then [ dp \I/Jr(p)\il(p)p2 adds up the total
amount of kinetic energy by attaching p? to each particle.

Let’s suppose this time that we have to kinds of particles. We’ll call one of them an electron
and the other a proton. I point out that these are merely names attached to bosons, not the actual
fermion version of these particles.

2
1= [ o[ @)(- 150 = [ de( W)~ 1 V(). (13)

Next, we perform an integration by parts.

H= /daz %\Iﬁ(x) %xp(:p). (14)

d d
By imagining the expression d—\I/T(:c) d—\IJ(z) as the square of a derivative of a field, we get a
x by

particular form of the generic term in a Hamiltonian in a field theory.
Vv? Vv?
H= /dx[\lli(:zr)(— —

Wala) + W)
n / do B! (2) 8] ()T, (2) T (), (15)

)Vp(2)]

where the first term is the KE of all the electrons and the second terms is the KE of all the protons.
The third term will only act to remove an electron-proton pair it they are at point x at the same
time. If this interaction does simultaneously occur, it will then be followed up by the creation of
an electron-proton pair, the net effect of which is to scatter the incoming pair to an outgoing pair.
And, of course, the overall momentum of the particles is conserved in this reaction.

The third term is therefore appropriate to put into a Hamiltonian for the interaction of two
particle which appear to interact only by very short-range interaction potentials.
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Figure 1. Depicted is the decay of particle a that disappears at the interaction point, and
then particles b and ¢ appear. Our job is to correlate this interaction inside a Hamiltonian.

The following equation attaches to the interaction presented in spacetime diagram Fig. 1.

H= g/ da Ul ()0l (2) W, () . (16)



As before, we could adjust this equation to show that momentum is conserved. We have added a
factor of g that indicates how likely it is (or isn’t) that a particular interaction will occur. It is
referred to as the ‘coupling constant’.

However, (16) is not in the correct form, because H is hermitian, but (16) isn’t. Let’s fix this.
The fix is easy:

H = g/ dx \IIZ(CE)\I/Z(x)\Ila(w) + g/ dz Ul ()W, (2)Ty(2) . (17)

This second term has the associated graphic:

S

Figure 2. Depicted is the interaction at point . In comes particle a, which is then
annihilated, and out goes particles b and c.

So, now we have the basic rules of a simple quantum field theory.

2 Hamiltonian terms of second-order

At this point, we return to Eq. (4), only this time we will include a term of one more order:

62
W(t+6)>%W(t)%ilew(t))*5H2|90(t)>~ (18)

How shall we deal with the H? term? Instead of squaring it out, we’ll use pictures to help us out.
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Figure 3. The more complicated figure in the figure is second-order in the

Hamiltonian. a and b have scattered with each other with the exchange of a
c. As a second-order effect, its likelihood of occurrence would go as g2.



In ‘squaring’ the hamiltonian, we get the term
H = Ul (2) U] (2) 0, () Ul (2) 0y (2)To(2) . (19)

The effect of this term is to conjoin b and ¢ to make an a, and then to annihilate a to remake b and
¢, effectively allowing b and c to scatter off each other. So, we find that the Hamiltonian and all it
powers update the state.

Next, we consider electrons interacting with each other and with the electromagnetic field.

Figure 4. Depicted on the left is an electron emitting a photon. The operator to
describe this interaction is A\Ill(:v)\I/e(x), where A is the photon creation operator.
Depicted on the right is a figure that suggests a second-order effect.

The second-order effect should be interpreted more as an adjustment to the first-order effects,
suggesting an electron-photon pair (a superposition), rather than a whole new process.

3 The Dirac Equation

Following Dirac’s motivation, we wish top place spae and time on an equal footing to arrive at
a special-relativistic replacement of the Schrodinger equation. We begin with the classical energy
equation:

E*=P*+m? (c=1). (20)
One could try the obvious substitution:
E —i0/ot, (21)
and then (20) becomes the Klein-Gordon equation:

02 0?
R (22)

But Dirac wanted an equation operator in the first power of E, not the second power. Let’s try an

ansatz, then:
iaa—lf:\/P2+m2¢. (23)

Well, let’s hope we can do better than that. For our next ansatz, let’s try to find the correct equation
for a massless particle. This particle must move at the speed of light, and has momentum P = E.
In particular, this particle moves to the right.

v _ov

i = o (24)



Or, on rearranging,

o o
0. 2
ot Oz 0 (25)
The solutions to this equation are of the form

which describes a rigid wave moving to the right.

Now, there are two problems with this solution that we have to fix. The first is that we are
allowed negative momenta, but not negative energies, which means that it’s then possible to fill the
world with negative energy particles without a boundary limit. The second problem is that it only
has particles that can move to the right.

To deal with the asymmetry of motion problem, Dirac suggested that we hypothesize the exis-
tence of two ‘species’ of electrons: one kind that moves to the right 11, and one that moves to the
left 1)5. This gives us the pair of equations:

o1 o

ot T ar O (27)
Oy Oy
5~ 5 = 0. (28)

With the idea that our coupled wavefunction involve the notion of a sign duality +1, let’s express
the last set of coupled equations in matrix form, such that we can highlight this notion of a (+1)
eigenstate and a (—1) eigenstate. Therefore, the left-right observable for this discrete symmetry is

b 56 ®

Dirac named this 2 x 2 matrix «. So, we end up with the two equations

H =P, (30)

() ==10 2 e () @

We can now simplify this equation by writing ¥ as the two- component column vector

v (jﬁ;) . (32)

0y . oY
gy = —lag .
The last problem that Dirac had was to manipulate the Hamiltonian someway so as to introduce
mass, otherwise this equation would be stuck on massless particles. So, he tried

and thus

Then,
(33)

H=aP+ pm, (34)

where m is the rest mass, but he still had to work with the two-component column vectors, and
2 X 2 matrix operators. So, (3 is a 2 X 2 matrix to be consistent with the fact that « is a 2 X 2 matrix.
Now, we still have the constraint equation that (34) has to agree with

E?=P*+m?. (35)



On squaring (34), we get
E? = (aP + Bm)(aP + fm) = oa*P* + mP(af + fa) + f2m?. (36)
On comparing these last two equations, we must have that

1=a%=p5?, (37a)
0=af+ fa. (37b)

Now, our 2 X 2 o matrix clearly squares to the 2 x 2 identity matrix, and a suitable Pauli matrix
for B that anticommutes with « would be

f= (‘f 3) . (38)

Thus, we rewrite (31) as

A6 DRI -

This gives us the pair of coupled equations:

0P 0P
i T =ms, (40)
Oy OYy
ZW 72@ —m'l/Jl. (41)

Now that the equations are coupled, what speed does the particle move at? Well, less than the
speed of light because, by design, it was set up to conform to (20).

Now, what at first seemed silly about this moving to the right needing to be countered by also
moving to the left, turned out to make sense: for, when viewed from the special relativistic point of
view, a mass particle can move either to the left or right, depending on how one boosts one’s frame,
i.e., performs a Lorentz transformation.



