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Abstract

This paper contains my read-a-long notes on how to develop the quantum mechanical equations
for the Heisenberg Picture. These notes come from the lecture from Barton Zwiebach1. The
fault for any inaccuracies in this presentation is strictly my own.

1 Introduction

With the Heisenberg picture for quantum mechanics, we’ll see how the Schrödinger oscilator acquires
time dependence. And we’ll find a greater connection between classical mechanics and quantum
mechanics. So we begin.

|ψ, t ⟩= U(t, t0) |ψ, t0 ⟩ . (1)

implies the Schrödinger equation with Hamiltonian

H(t) = iℏ
(
∂

∂t
U(t, t0)

)
U†(t, t0) . (2)

Our goal is to find U(t, t0) given H(t), which is often made-to-order.

We can multiply through on the right on the last equation by U(t, t0) and reverse sides, to get

iℏ
d

dt
U(t, t0) = H(t)U(t, t0) . (3)

And from this we get the Schrödinger equation

iℏ
d

dt

(
U(t, t0)) |ψ, t0 ⟩

)
= H(t)

(
U(t, t0)) |ψ, t0 ⟩

)
. (4)

Now, let’s go to cases!

Case 1) H is time-independent.

iℏ
dU

dt
= HU . (5)

We’ll try the ansatz
U = e−iHt/ℏU0 , (6)

1MIT 8.05 Quantum Physics II, Fall 2013, 13. Quantum Dynamics (con’t) Heisenberg Picture.
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where U0 is a constant matrix. On substituting into (5) we get

iℏ
dU

dt
= iℏ

dU

dt
= H(t)U . (7)

So,

iℏ
dU

dt
= iℏ

−iH
ℏ

e−iHt/ℏU0 = HU , (8)

and it works.
Now,

U(t, t0) = e−iHt/ℏU0 . (9)

At t = t0, U(t0, t0) = 1, so this last equation becomes

1 = e−iHt0/ℏU0 . (10)

So, on solving for U0, we get
U0 = eiHt0/ℏ . (11)

Therefore, we get
U(t, t0) = e−iH(t−t0)/ℏ , (12)

again, for the time-independent case. And we have that

eαH |ψn ⟩= eαEn |ψn ⟩ , (13a)

if H |ψn ⟩= En |ψn ⟩ . (13b)

Case 2) H has a little time dependence, with

[ Ĥ(t1), Ĥ(t2) ] = 0 for all t1, t2 . (14)

As an example, consider a magnetic field whose field lines are collinear in a region, but whose
strength along a give line is allowed to vary.

H = −γB̂(t) · Ŝ . (15)

So, if we have that
H = −γBz(t) · Ŝz , (16)

then H(t1) commutes with H(t2).
Let’s try the ansatz

U(t) = exp [− i

ℏ

∫ t

t0

H(t′) dt′ ] , (17)

Let’s define

− i

ℏ

∫ t

t0

H(t′) dt′ ≡ R(t) . (18)

Then

Ṙ = − i

ℏ
H(t) . (19)

So,
U = eR . (20)
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Therefore,

dU

dt
=

d

dt

(
1 +R+

1

2
RR+

1

3!
RRR+ · · ·

)
= Ṙ+ 1

2 (ṘR+RṘ) +
1

3!
(ṘRR+RṘR+RRṘ) + · · ·

= ṘeR , (21)

where we used that R and Ṙ commute.
So,

dU

dt
= ṘeR = − i

ℏ
H(t)U , (22)

which is the same as (3).

Case 3) H(t) is general. We can at least write down something that makes sense.

U(t, t0) = T exp [− i

ℏ

∫ t

t0

H(t′)dt′ ]

= 1 +
−i
ℏ

∫ t

t0

H(t1)dt1 +
1
2

(
−i
ℏ

)2 ∫ t

t0

H(t′)dt′
∫ t

t0

H(t′′)dt′′ + · · · , (23)

where the T indicates a time-ordered exponential.

U(t, t0) = T exp [− i

ℏ

∫ t

t0

H(t′)dt′ ]

= 1 +
−i
ℏ

∫ t

t0

H(t1)dt1

+

(
−i
ℏ

)2 ∫ t

t0

H(t1)dt1

∫ t1

t0

H(t2)dt2

+

(
−i
ℏ

)3 ∫ t

t0

H(t1)dt1

∫ t1

t0

H(t2)dt2

∫ t2

t0

H(t3)dt3 + · · · . (24)

So, if we take the time derivative, we’ll get (3). However, this equation is of limited usefulness.
Now that we know U(t, t0), we can evolve the wave function in time.

2 The Heisenberg Picture of Quantum Mechanics

We begin with the Scrödinger picture of quantum mechanics. It contains operators such as x, p,
spin, and the Hamiltonian, wave functions, onto which we develop a new way to think about it.

Consider a generic Scrödinger operator ÂS . What is the matrix element between these two states
|α, t ⟩ and |β, t ⟩? 〈

α, t | ÂS |β, t
〉
=
〈
α, 0 | U†(t, 0)ÂSU(t, 0) |β, 0

〉
. (25)

Now, we have a dual way to interpret this. On the LHS, we have the effect of ÂS and on the RHS,
we have the effect of the time-dependent operator U†(t, 0)ÂSU(t, 0) on the time-independent states
|α, 0 ⟩ and |β, 0 ⟩.

Let us define the new operator

ÂH ≡ U†(t, 0)ÂSU(t, 0) , (26)
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Comments:

At t = 0, ÂH(t = 0) = ÂS (t = 0).

1S −→ 1H = U†(t, 0)1SU(t, 0) = 1S .

Problem: Given the operator ĈS such that

ĈS = ÂSB̂S , (27)

what is ĈH?
ĈH = U†ĈSU = U†ÂSUU

†B̂SU = ÂHB̂H , (28)

If [ ÂS , B̂S ] = ĈS then [ ÂH , B̂H ] = ĈH .

Since [x, p ] = iℏ1 then [xH(t), pH(t) ] = iℏ1.

Now, what about Hamiltonians?

HH = U†(t, 0)HSU(t, 0) . (29)

And for all t1, t2,
[HS(t1), HS(t2) ] = 0 , (30)

then
HH(t) = HS(t) . (31)

But if HS(t) = HH(x̂, p̂, t) then

HH(t) = U†HS(t)U = U†HS(x̂S , p̂S , t)U = HS(x̂H , p̂H , t) = HS(x̂, p̂, t) , (32)

established by the usual means. This is a useful result.

Expectation Values

Set both α and β equal to |ψ, t ⟩:〈
ψ, t | ÂS |ψ, t

〉
=
〈
ψ, 0 | ÂH(t) |ψ, 0

〉
. (33)

This can simplify some computations. In shorthand:

⟨ ÂS ⟩ = ⟨ ÂH(t) ⟩ , (34)

is used but needs some interpretation.

And we’re back to the problem of determining ÂH where U is difficult to calculate.

Heuristic: Try to find a differential equation that is satisfied by the Heisenberg operator, other than

ÂH = U†(t, 0)ÂSU(t, 0) , (35)

So,

iℏ
d

dt
ÂH = iℏ

∂U†

∂t
ÂSU + iℏU† ∂ÂS

∂t
U + iℏU†ÂS

∂U

∂t
. (36)
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But

iℏ
∂U

∂t
= HSU , (37)

So,

iℏ
∂U†

∂t
= U†HS , (38)

where i† = −i. Hence,

iℏ
d

dt
ÂH = −U†HSÂSU + U†ÂSHSU + iℏ

(
∂ÂH

∂t

)
H

, (39)

This can be rewritten as

iℏ
dĤH(t)

dt
= [ ÂH , ĤH ] + iℏ

(
∂ÂS

∂t

)
H

, (40)

This is the Heisenberg equation of motion. Let’s go to cases.

1) Suppose
∂ÂS

∂t
≡ 0 then

iℏ
dĤH(t)

dt
= [ ÂH , ĤH(t) ] . (41)

2) ÂS has no explicit time dependence.

iℏ
d

dt

〈
Ψ, t | ÂS |Ψ, t

〉
= iℏ

d

dt

〈
Ψ, 0 | ÂH |Ψ, 0

〉
=

〈
Ψ, 0 | iℏdÂH

dt
|Ψ, 0

〉
=
〈
Ψ, 0 | [ ÂH , ĤH ] |Ψ, 0

〉
(42)

From this we get that

iℏ
d

dt
⟨ ÂH(t) ⟩ = ⟨ [ ÂH , ĤH ] ⟩ , (43)

or

iℏ
d

dt
⟨ ÂS ⟩ = ⟨ [ ÂS , ĤS ] ⟩ . (44)

Is it a conserved operator? ÂS is conserved if it commutes with the Hamiltonian. [ ÂS , ĤS ] = 0.
But this implies that

[ ÂH , ĤH ] = 0 , (45)

which then implies that

d⟨ ÂH ⟩
dt

= 0 which implies that
dÂH

dt
= 0 . (46)

In this case we get that ÂH is time-independent.

Example: Harmonic oscillator.

HS =
p̂2

2m
+ 1

2mω
2x̂2 . (47)
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Or,

HH =
P̂

2

H

2m
+ 1

2mω
2X̂

2

H(t) . (48)

Can we solve for X̂H and P̂H?

iℏ
dX̂H

dt
= [ X̂H , ĤH ] = [ X̂H ,

1

2m
P̂

2

H ] =
1

2m
P̂H(iℏ)2 . (49)

Yielding,

dX̂H

dt
=

1

m
P̂H , (50)

which looks like classical mechanics. Also,

iℏ
dP̂H

dt
= [ P̂H , ĤH ] = [ P̂H ,

1
2mω

2X̂
2

H ] = 1
2mω

22X̂H(−iℏ) . (51)

Hence,

dP̂H

dt
= −mω2X̂H . (52)

On differentiating, we get

d2X̂H

dt2
=

1

m

dP̂H

dt
=

1

2m
(−mω2X̂H) . (53)

Finally,

d2X̂H

dt2
= −ω2X̂H , (54)

with solutions
X̂H(t) = Â cosωt+ B̂ sinωt , (55)

where Â and B̂ are time-independent operators. Similarly,

P̂H(t) = m
dX̂

dt
= −mωÂ sinωt+mωB̂ cosωt . (56)

At t = 0,
X̂H(t = 0) = Â = X̂ , (57)

and
P̂H(t = 0) = mωB̂ = P̂ , (58)

implying that

B̂ =
1

mω
P̂ . (59)

This leaves us with the complete solution.

X̂H(t) = X̂ cosωt+
P̂

mω
sinωt , (60a)

P̂H(t) = P̂ cosωt−mωX̂ sinωt . (60b)
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Finally, let’s calulate the Heisenberg Hamiltonian.

ĤH(t) =
1

2m
(P̂ cosωt−mωX̂ sinωt)2 + 1

2mω
2(X̂ cosωt+

P̂

mω
sinωt)2

=
1

2m
cos2 ωt P̂

2
+

1

2m
m2ω2 sin2 ωt X̂

2
− 1

2m
mω sinωt cosωt (P̂ X̂ + X̂P̂ )

=
1
2mω

2

m2ω2
sin2 ωtP̂

2
+ 1

2mω
2 cos2 ωtX̂

2
+ 1

2

mω2

mω
cosωt sinωt (X̂P̂ + P̂ X̂)

=
P̂

2

2m
+ 1

2mω
2 cos2 X̂

2
= HS(t) . (61)
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