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Abstract

The gamma matrices were invented by physicist Paul Dirac in his attempt
to formulate a relativistic version quantum mechanics suitable for charac-
terizing the electron. In this paper, I will focus only on the mathematical
aspects of the Dirac algebra and how one uses the trace on the gamma
matrices.

1 Introducing the gamma matrices

It’s standard when introducing the gamma matrices to represent them as ex-
tension of the Pauli matrices. I won’t do this here. Instead, I will introduce
the four gamma matrices with lower indices, γµ where µ ∈ [ 0, 1, 2, 3 ]. These
are 4 × 4 matrices over the complex numbers. To these we add the unit 4 × 4
matrix, I:

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1)

Among the four gamma matrices, one of them is not like the others. The γ0
matrix squares to be γ2

0 = I, where

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (2)

Whereas, the γi matrices (i ∈ [1, 2, 3]) square to be −I, where

γ1 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , γ2 =


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 , γ3 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 .

(3)
The difference in these signs for the squares of these matrices represents how
we’ve chosen our metric for the problem, though I won’t go into that here.
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We can already see an interesting property of the gamma matrices, which
is that all their traces are zero. (See the appendices for a short tutorial on the
trace function.)

The last gamma matrix which is given a standard name is γ5, defined by

γ5 ≡ −iγ0γ1γ2γ3 , (4)

where i is the usual imaginary unit i =
√
−1. Its matrix looks like:

γ5 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (5)

Clearly, γ5 is also traceless. Thus,

Tr (γ5) = 0 . (6)

Now, consider the matrix formed by the product of k gamma matrices. There
are

(
4
2

)
= 6 ways to multiply two gamma matrices together (which ignores their

order). A typical product of two gamma matrices, say γ1 and γ2, is

γ2γ1 =


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 , (7)

where γ2γ1 is traceless. Now, notice that matrix γ2γ1 = −γ1γ2. There are(
4
3

)
= 4 ways to multiply three gamma matrices together (which also ignores

their order).
It turns out that every product of the gamma matrices that does not result

in a multiple of the identity matrix will have zero trace.

2 Further properties of the gamma matrices

The properties I want to include here are those that would have been presented
already if this paper were really about the development of the Dirac equation,
which it is not.

a) For µ, ν = 0, 1, 2, 3

γµγν = −γνγµ (µ ̸= ν) . (8)

b) γ2
0 = I, and for i = 1, 2, 3

γ2
i = −I . (9)
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c) γ2
5 = I, and for µ = 0, 1, 2, 3,

γµγ5 = −γ5γµ . (10)

d) Let’s combine the information in a) and b) above to get:

γµγν + γνγµ =

{
2γ2

µ (µ = ν) ,

0 (µ ̸= ν) .
(11)

Thus, we are in the position now to define a metric on the space of the gamma
matrices:

gµνI ≡ 1
2 (γµγν + γνγµ) , (12)

where the 4× 4 rendering of this matrix has the form

gµν −→


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (13)

Thus we can interpret the anticommutivity of distinct gamma matrices to imply
that they are orthogonal.

Note: This metric we have is in flat spacetime, and so some authors use for
the metric ηµν instead of gµν .

And note that
γµγ

µ = 4 . (14)

We’ve now completed the minimum needed to define arbitrary vectors by
use of the gamma matrices. Therefore, let

/a = aµγµ and /b = bνγν , (15)

where aµ and bν are arbitrary complex numbers and we have employed the
Einstein summation convention.

Show that
/a/b = 2/a · /bI − /b/a . (16)

First, from (12) we get that

γµγν = 2gµνI − γνγµ . (17)

Then,

/a/b = aµγµb
νγν

= aµbν(2gµνI − γνγµ)

= 2aµbµI − aµbνγνγµ

= 2/a · /bI − /b/a . (18)
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Show that γµ/aγ
µ = −2/a.

Proof:
γµ/aγ

µ = γµa
αγαγ

µ

= aα(2γµ · γα − γαγµ)γ
µ

= aα(2γµ · γαγµ − γαγµγ
µ)

= aα(2γα − 4γα)

= −2/a . (19)

Show that γµ/a/bγ
µ = 4a · b.

Proof:
γµ/a/bγ

µ = (γµa
αγα)/bγ

µ

= aα(2γµ · γα − γαγµ)/bγ
µ

= aα/b(2gµαγ
µ)− aαγα(γµ/bγ

µ)

= 2/b/a+ 2/a/b

= 4/a · /b . (20)

Show that γµ/a/b/cγ
µ = −2/c/b/a.

Proof: I don’t quite have the proof, but I think I have something close to it.

/a/b/c = [ 2/a · /bI − /b/a ]/c

= 2/a · /b/c− /b/a/c

= 2/a · /b/c− /b[ 2/a · /c− /c/a ]

= 2/a · /b/c− 2/a · /c/b+ /b/c/a

= 2/a · /b/c− 2/a · /c/b+ [ 2/b · /c− /c/b ]/a

= 2/a · /b/c− 2/a · /c/b+ 2/b · /c/a− /c/b/a . (21)

With a little manipulation, we get

/a/b/c+ /c/b/a = 2/a · /b/c− 2/a · /c/b+ 2/b · /c/a . (22)

Next, we apply the γµ γµ operator across both sides to get,

γµ(/a/b/c+ /c/b/a)γµ = −4/a · /b/c+ 4/a · /c/b− 4/b · /c/a . (23)

Therefore, we can claim that

γµ(/a/b/c+ /c/b/a)γµ = −2(/a/b/c+ /c/b/a) . (24)
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It seems that the identity we want to prove follows if we can show that /a/b/c = /c/b/a,
for then we would have that

γµ(2/a/b/c)γ
µ = −2(2/c/b/a) , (25)

or
γµ/a/b/cγ

µ = −2/c/b/a . (26)

3 Trace properties of the gamma matrices

As a reminder, there are two appendices for this paper that go over the trace
function/operator.

Now, in any number field, such as the real or the complex numbers, the
solution to the following equation

x = −x (27)

is the number zero. This ‘trivial’ fact comes in very handy.
Above, we showed that the trace of each the gamma matrix is zero by in-

spection. But, there is a more elegant way to prove this. We begin with

Tr (γµ) = Tr (γ2
5γµ) , (28)

because, as you remember, γ2
5 = I. Thus,

Tr (γµ) = Tr (γ5γ5γµ) . (29)

Now, I’m going to move the middle γ5 to the right, using the fact that it
anticommute with every gamma matrix γµ. Then

Tr (γµ) = −Tr (γ5γµγ5) . (30)

But I can alternatively move the leftmost γ5 in (29) to the right edge by using
cyclic permutation, hence

Tr (γµ) = Tr (γ5γµγ5) . (31)

Therefore,
Tr (γµ) = 0 . (32)

Show that Tr (γµγν) = 4gµν .

First, we start with the fact that

Tr (γµγν) = Tr (γνγµ) . (33)
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Therefore,

Tr (γµγν) =
1
2 [ Tr (γµγν) + Tr (γνγµ) ]

= 1
2Tr (γµγν + γνγµ)

= Tr ( 12 [ γµγν + γνγµ ])

= Tr (gµνI)

= gµνTr (I)

= 4gµν . (34)

Show that Tr (γµγνγρ) = 0.

First, we start with the fact that

Tr (γµγνγρ) = Tr (γ2
5γµγνγρ) = Tr (γ5γ5γµγνγρ) , (35)

and we proceed similarly to show we proceeded in Eq. (28). So that, when
we move γ5 to the right, transposing three times, once for each of the gamma
matrices, we get

Tr (γ5γ5γµγνγρ) = (−1)3Tr (γ5γµγνγργ5) = −Tr (γ5γµγνγργ5) . (36)

On the other hand, if we start with Tr (γ5γ5γµγνγρ) and cyclicly permute the
leftmost γ5 to the rightmost spot, we get

Tr (γ5γ5γµγνγρ) = Tr (γ5γµγνγργ5) . (37)

Hence, we conclude that
Tr (γµγνγρ) = 0 . (38)

And it’s immediately clear by induction that this result would also hold for
the trace of any odd number of gamma matrices as its argument.

Show that
Tr (γµγνγαγβ) = 4(gµνgαβ − gµαgνβ + gµβgνα) . (39)

Proof:

γµγνγαγβ = (2gµνI − γνγµ)γαγβ

= 2gµνγαγβ − γνγµγαγβ

= 2gµνγαγβ − γν(2gµαI − γαγµ)γβ

= 2gµνγαγβ − 2gµαγνγβ + γνγαγµγβ

= 2gµνγαγβ − 2gµαγνγβ + γνγα(2gµβI − γβγµ)

= 2gµνγαγβ − 2gµαγνγβ + 2gµβγνγα − γνγαγβγµ . (40)
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Now we take the trace of this last equation

Tr (γµγνγαγβ) = 2gµνTr (γαγβ)− 2gµαTr (γνγβ) + 2gµβTr (γνγα)

− Tr (γνγαγβγµ)

= 8gµνgαβ − 8gµαgνβ + 8gναgµβ − Tr (γµγνγαγβ) . (41)

Hence
Tr (γµγνγαγβ) = 4(gµνgαβ − gµαgνβ + gµβgνα) . (42)

Show that Tr (γ5/a/b) = 0.

Proof:

First, we start with the fact that

Tr (γ5/a/b) = Tr [ γ5(2/a · /bI − /b/a) ]

= Tr [ γ5(2/a · /bI) ]− Tr (γ5/b/a)

= (2/a · /b)Tr (γ5)− Tr (γ5/b/a)

= −Tr (γ5/b/a) . (43)

Then, we can write

Tr (γ5/a/b) =
1
2 [ Tr (γ5/a/b)− Tr (γ5/b/a) ]

= 1
2 [ Tr (γ5(/a/b− /b/a) ] . (44)

Now, in plain old matrix talk, /a/b−/b/a is just an antisymmetric matrix. So, let’s
give it the components

/a/b− /b/a =


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 . (45)

On multiplying (45) on the left by γ5, we get

γ5(/a/b− /b/a) =


−b −d 0 f
−c −e −f 0
0 a b c
−a 0 d e

 , (46)

which is clearly traceless. Hence,

Tr (γ5/a/b) = 0 . (47)
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Show that Tr (γ5γµγν) = 0.

Proof:1 For any pair of indices µ, ν there exists some α ̸= µ, ν such that

Tr (γ5γµγν) = g−1
ααTr (γ5γµγνγ

2
α)

= g−1
ααTr (γ5γµγν γ̇αγα)

= (−1)3g−1
ααTr (γ̇αγ5γµγνγα) , (48)

where the dotted gamma was moved to the leftmost spot by transposing it with
the intervening matrices, hence, the (−1)3 factor. Next,

Tr (γ5γµγν) = −g−1
ααTr (γ̇αγ5γµγνγα)

= −g−1
ααTr (γ5γµγνγαγ̇α) (by cyclicly permuting)

= −g−1
ααTr (γ5γµγνγ

2
α)

= −Tr (γ5γµγν) , (49)

Therefore, we conclude that

Tr (γ5γµγν) = 0 . (50)

Now, with this last identity, we have a more elegant way to establish (47).

Tr (γ5/a/b) = Tr (γ5a
µγµb

νγν)

= aµbνTr (γ5γµγν)

= 0 . (51)

Show that
Tr (/a/b) = 4/a · /b . (52)

Proof: We begin with the fact that Tr (/a/b) = Tr (/b/a). Hence,

Tr (/a/b) = 1
2 [ Tr (/a/b) + Tr (/b/a) ]

= Tr ( 12 [ /a/b+ /b/a ])

= Tr (/a · /bI)
= 4/a · /b . (53)

4 Appendix 1: The Trace Function on Matrices

This article will begin with the easy identities about the trace function and then
progress to evermore difficult ones. But first, we need to define what is meant
by the trace function of a square matrix.

1The proof I use here was inspired by a similar proof I found at
https://imathworks.com/physics/physics-gamma-matrices-and-trace-operator/
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Definition: In a square matrix A, the main diagonal starts at the upper left
element a11 and proceeds down the diagonal to the lower right ann. See Fig. 1.

Definition: The elements of A not on the Main Diagonal are said to be ‘off-
diagonal’ elements.

Definition: A square matrix is said to be ‘diagonal’ if its off-diagonal elements
are all zero. Obviously, the zero matrix is trivially diagonal.

Definition: The symbol that will be used for the trace function in this paper
is Tr (). Thus, for the n× n matrix A,

Tr (A) ≡ a11 + a22 + · · ·+ ann , (54)

that is, the trace is the sum of the components on the main diagonal.
Definition: The ordered set on the elements on the Main Diagonal of matrix
A are presented in the convenient form diag(A) = (a11, a22, . . . , ann). (By the
way, if the rows and columns start their counting at zero instead of at unity
then diag(A) = (a00, a11, a22, . . . , an−1n−1).) One advantage of introducing the
diag() function is that it allows us to write down much more compact math-
emtical expressions.

The diag() function is peculiar in that it can go the other way as well. Above,
we put into its argument a matrix and received back the vector of its diagonal
elements as its components. This time, we’ll input a vector/array and output a
diagonal matrix. Thus, for

v = v1, v2, · · · , vn , (55)

then

diag(v) =


v1

v2
. . .

vn

 , (56)

where, this time, the voided entries are all zeros.
If we take the composition of diag functions, diag(diag(A)), we get back

a diagonal matrix D, having on its main diagonal the diagonal elements of A.
Thus, for

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , (57)

then D = diag(diag(A)) = diag2(A), and

D =


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

 . (58)
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One last comment before we begin the identities. What kind of numbers
can we allow as the components of the square matrices of interest to us? Well,
for many purposes, we can allow them to be just elements of a ring, meaning
that they won’t need to have inverses. However, for the more advances require-
ments, we’ll see later on, the nonzero elements will need inverses. So, let’s just
keep things simple and assume that the components are either from the real or
complex numbers.

Definition: An n × n matrix whose trace is zero is said to be traceless. Now,
in a traceless matrix the components on the main diagonal need not all be zero,
but if they aren’t, they need to add up to zero.

Definition: We define the Sum() function on a vector/linear-array of numbers.
Let v be a vector/linear-array with n components v1, v2, . . . , vn. Then

Sum(v) ≡ v1 + v2 + · · ·+ vn . (59)

The following lemma

Tr (AB) ̸= Tr (A)Tr (B) , (60)

is easy to prove, by way of providing a counterexample. Let

A =

[
1 1
0 −1

]
, B =

[
1 0
1 1

]
then AB =

[
2 1
−1 −1

]
. (61)

Then, Tr (A)Tr (B) = 0 · 2 = 0, but Tr (AB) = 1.

5 Appendix 2: Simple identities of the Trace
function

a) Let In be the n× n identity matrix. Then Tr (In) = n. (Obvious.)

b) Let At stand for the transpose of A. Then Tr (At) = Tr (A). Since the
transpose operation leaves the elements on the Main Diagonal fixed, this proof
is obvious.

c) Let α be a scalar. Then Tr (αA) = αTr (A). To multiply a matrix by a scalar,
one means that each element of the matrix is multiplied by the scalar. Thus,

diag(αA) = (αa11, αa22, . . . , αann)

= α(a11, a22, . . . , ann) . (62)

Now, Tr (αA) = Tr (diag(αA)) = Sum(diag(αA)) = αa11+αa22+ · · ·+αann =
α(a11 + a22 + · · ·+ ann). And, αTr (A) = αSum(diag(A)) = α(a11 + a22 + · · ·+
ann). Hence, Tr (αA) = αTr (A).
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d) Let A,B be n × n matrices. Then Tr (A + B) = Tr (A) + Tr (B). We begin
with the fact that matrices are added together component-wise, so that the i, jth
component of (A+B)ij = Aij +Bij . Therefore the ith component on the main
diagonal of this sum is Aii +Bii. Therefore,

Tr (A+B) =

n∑
i=1

(Aii +Bii) . (63)

But,

Tr (A) + Tr (B) =

n∑
i=1

Aii +

n∑
i=1

Bii =

n∑
i=1

(Aii +Bii) . (64)

Hence, Tr (A+B) = Tr (A) + Tr (B). Corollary: Tr (A−B) = Tr (A)−Tr (B).

e) Let A,B be n × n matrices. Then Tr (AB) = Tr (BA). The proof of this
is not too difficult. The method is to look at the diagonal elements of both
AB and BA by multiplying them together in indice form and then show that
diag(AB) = diag(BA). It’s trivial from there.

f) Let [A,B ] be the commutator of A and B, where [A,B ] ≡ AB−BA. Show
that Tr ([A,B ]) = 0. This result follows trivially as a corollary to the last
lemma.

g) Let A1, A2, . . . , Ak be k n× n matrices. Then

Tr (A1A2 · · ·Ak) = Tr (A2 · · ·AkA1) . (65)

In essence, we’ve cyclically permuted the left-most factor to the right side of the
product. The proof of this involves induction. We need a base case to prove,
which we can accept as proved by use of e), thus: Tr (A1A2) = Tr (A2A1). Next,
use the inductive hypothesis to assume that (65) is true for k factors and then
prove that the relation (65) is true for k → k + 1. Anticipating future needs,
let’s define B = A2 · · ·AkAk+1, then

Tr (A1A2 · · ·AkAk+1) = Tr (A1(A2 · · ·AkAk+1))

= Tr (A1B)

= Tr (BA1)

= Tr (A2 · · ·AkAk+1A1) . (66)

Since the relation held for case k + 1, the relation is assumed to be true for all
k ≥ 2. Now, we have shown that we can move the leftmost matrix all the way
to the right, but we can also move the rightmost matrix all the way to the left
by similar arguments.
Lemma 1 (for the next theorem)

Let A,D,P be n×nmatrices, such that D is a diagonal matrix. Suppose further
that P is invertible and that

A = P−1DP . (67)
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Then Tr (A) = Tr (D). We will use cyclic permutation of matrices in this proof.

Proof:

Tr (A) = Tr (P−1DP ) = Tr (DPP−1) = Tr (DI) = Tr (D) . (68)

Lemma 2 (some results without proof)

We need some result from the theory of determinants, such as, the fact that
the determinant of a diagonal matrix is the product of the components on the
main diagonal.

Let A,B be n× n matrices, then it is known that

det(AB) = det(A) det(B) . (69)

By induction, we can show that the determinant of a product of matrices is
equal to the product of the determinant of the individual matrices, or

det(A1A2 · · ·Ak) = det(A1) det(A2) · · · det(Ak) . (70)

Now, if A is invertible, A−1A = I, then

det(A−1A) = det(A−1) det(A) = det(I) = 1 . (71)
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