
Special Relativity Notes for L. Susskind’s Lecture Series

(2012), Lecture 10

P. Reany

May 7, 2023

Abstract

This paper contains my notes on Lecture Ten of Leonard Susskind’s 2012 presentation on Special
Relativity for his Stanford Lecture Series. These notes are meant to aid the viewer in following
Susskind’s presentation, without having to take copious notes. The fault for any inaccuracies
in these notes is strictly mine.

1 Energy and momentum of the EM field

My notes on this lecture begin at about time stamp 34:00 minutes.

Consider x to be multidimensional. Give ϕ(x, t), ϕ̇, and ∂xϕ, what kind of Lagrangian can we
build out of these? Beginning from classical mechanics, we have an integral over time:

A =

∫
dtL

=

∫
dt

∫
d3xL

(
ϕ, ϕ̇,

∂ϕ

∂xm

)
. (1)

So,

L =

∫
d3xL

(
ϕ, ϕ̇,

∂ϕ

∂xm

)
. (2)

Now, electromagnetism has a notion of energy associated with it. We also know that it has a
momentum, which we’ll refer to as Π, and we will arrive at this functional form in the standard
ways of Lagrangian mechanics.

From a discrete Hamiltonian we have that

H =
∑
i

piqi − L . (3)

Our starting point is the following:

Πϕ(x) =
∂L

∂ϕ̇
, (4)

which allows us to define the notion of momentum that has nothing to do with the classical mv.
It’s referred to as canonical momentum.

Classically, the Hamiltonian is indexed by i as below, which is used to sum over all the degrees
of freedom, but that is now replaced by the continuous variable x:

H =

∫
d3x

(
Π(x)ϕ̇(x)−L

)
. (5)
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Hence, we consider the quantity Πϕ(x)ϕ̇(x) −L as the energy density. A possible particular La-
grangian density could be

L = 1
2 ϕ̇

2 − 1
2

(
∂ϕ

∂x

)2

− V (ϕ) , (6)

where the two terms 1
2 ϕ̇

2 − 1
2

(
∂ϕ

∂x

)2

is our term 1
2∂µϕ∂

µϕ. However, we wish to keep these two

terms explicit for the time being.
Using (4), we get

Πϕ = ϕ̇ . (7)

We can now rewrite the Hamiltonian as an energy:

H =

∫
dx

(
1
2 ϕ̇

2 + 1
2

(
∂ϕ

∂x

)2

+ V (ϕ)
)
. (8)

Let’s use this ‘energy’ to be the time-time component T 00 of some tensor Tµν , which we will develop
as the lecture continues.

T 00 = 1
2 ϕ̇

2 + 1
2

(
∂ϕ

∂x

)2

+ V (ϕ) . (9)

In special relativity, the energy E is the time component of the momentum 4-vector p, and
p0 = E, and it is conserved locally. As before, we know that

jµ ←→ (ρ, j) where j0 = ρ . (10)

Then

p =
∑

piδqi −→
∫

Π(x)δϕ =

∫
Π(x)

∂ϕ

∂x
δx . (11)

For a simple field theory, we get a field momentum as

T 0m = Π
∂ϕ

∂xm
= ϕ̇

∂ϕ

∂xm
=

∂ϕ

∂t

∂ϕ

∂xm
. (12)

And T 0m is the time component of the momentum.
Now, if we wish to enforce translational invaraince, we must demand that this expression is

invariant under both particle and field translation, which will give us the conservation of momentum.
T 00 and T 0m are components of the energy-momentum tensor.

2 Fixing a gauge in E&M for simplicity

There are useful ways, in particular, of forming a gauge transformation

Aµ → Aµ +
∂S

∂xµ
. (13)

For example, we could choose S so that the time component of Aµ is zero. Then

A0 → A0 +
∂S

∂x0
= A0 +

∂S

∂t
= 0 , (14)

where ∂S/∂t is at a fixed position in space.1 Hence,

∂S

∂t
= −A0 . (15)

1In physics, but so usual in mathematics, the partial derivative is explicit, meaning that it does not contain
contributions from changes due to motion in space (i.e., the implicit derivative part).
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Thus,

A′
µ = Aµ +

∂S

∂xµ
with A′

0 = 0 . (16)

Note: We use the Maxwell convention on signs.

E = −∂A

∂t
+���*

0
∇A0 = −∂A

∂t
. (17)

And,
B = ∇×A , (18)

is unchanged. So,
L = − 1

4FµνF
µν = 1

2 (E
2 −B2) . (19)

Substituting in,

L = 1
2

(
∂A

∂t

)2

− 1
2 (∇×A)

2
, (20)

where 1
2

(
∂A

∂t

)2

acts a kinetic energy and 1
2 (∇×A)

2
acts as a potential energy.

What is the momentum conjugate to a particular component of the vector potential?

Πm =
∂L

∂(∂tAm)
=

∂Am

∂t
(m = 1, 2, 3) . (21)

By the way,
Πm = −Em . (22)

Now, the EM field energy is given as the Hamiltonian

H = 1
2E

2 + 1
2B

2 . (23)

Next, we ask is the momentum density of the EM field.

P =

∫
dxΠ

∂ϕ

∂x
. (24)

Then,

Pn =

∫
dx

∑
m

Em
∂Am

∂xn
, (25)

where this momentum is along the nth axis.2

∫
Em

∂An

∂xm
d3x = −

∫
∂Em

∂xn
d3x+ EmAn

∣∣∣+∞

−∞

= −
∫

∂Em

∂xn
d3x

= −
∫

(���:0
∇ ·E) And

3x

= 0 . (26)

2Thre may be a sign problem here.
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Hence, (27) becomes

Pn =

∫
dx

∑
m

Em

(
∂Am

∂xn
− ∂An

∂xm

)
, (27)

which takes us to the Poynting vector:

P =

∫
E×B d3x , (28)

which is along the direction of wave motion. (In the physics literature, the Poynting vector is most
often given the symbol of a capital S.)

3 A bit more about the T µν tensor.

Tµν is a symmetric tensor, meaning that Tµν = T νµ over all indicies.
Next,

T 00, T 01, T 02, T 03 (29)

are densities.
T 10, T 20, T 30 (30)

represent fluxes of energy, respectively, in the x, y, z directions
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