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Abstract

This paper contains my notes on Lecture Six of Leonard Susskind’s 2012 presentation on Special
Relativity for his Stanford Lecture Series. These notes are meant to aid the viewer in following
Susskind’s presentation, without having to take copious notes. The fault for any inaccuracies
in these notes is strictly mine.

1 Review

Consider aµ to be a 4-vector in spacetime. Then

Aµ → A0, Am µ = 0, 1, 2, 3 and m = 1, 2, 3 . (1)

The quantity dxµ is a contravariant differential 4-vector. The metric of spacetime is

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2)

We can use this operator to create covariant 4-vector out of a contravariant 4-vector Aν :

Aµ = ηµνA
ν (3)

In particular:

A0 = −A0 , (4)

Am = Am . (5)

Next, let ϕ be a scalar field. Then we can form the covariant vector

∂ϕ

∂xµ
= ∂µϕ . (6)

Once again, for scalar field ϕ, we can form the differential scalar

dϕ = ϕ(x+ dx)− ϕ(x) =
∂ϕ

∂xµ
dxµ , (7)

where dϕ is given as the ocntraction of the two vectors
∂ϕ

∂xµ
and dxµ.
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If Aµ and Bµ are contravariant vectors,1 Then AµB
µ is a Lorentz scalar. Further, we can form

a scalar out of Bµ by the contraction on indices: ∂µB
µ.

Fact: Every (proper homogeneous) Lorentz transformation can be factored as the product of a
rotation and a Lorentz boost.

As a reminder γ = 1/
√
1− v2 = 1/

√
1− ẋ2.

Let L be a Lorentz boost at speed v along the positive x direction, then

Lµ
ν =


γ −vγ 0 0

−vγ γ 0 0
0 0 1 0
0 0 0 1

 . (8)

Wioth the help of this matrix, we can transform a contravariant vector Aν in the unprimed system
into the corresponding contravariant vector Aµ′

in the primed system by

Aµ′
= Lµ

νA
ν . (9)

For example, the transformation of the spacetime point x in the unprimed system is rendered in the
prime system by 

t′

x′

y′

z′

 =


γ −vγ 0 0

−vγ γ 0 0
0 0 1 0
0 0 0 1



t
x
y
z

 . (10)

If the only operation we perform on coordinates is a physical rotation in the y-z plane by an
angle of θ degrees, we can represent that too:

t′

x′

y′

z′

 =


1 0 0 0
0 1 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ



t
x
y
z

 . (11)

Aµ′ Lν
µ //

ηµρ

��

Aν

ηντ

��
Aρ

′ Mρ
τ // Aτ

2 Tensor Notation

A scalar is a tensor of rank 0. A vector is a tensor of rank 2. Etc.

The tensor
Tµν ≡ AµBν (12)

has 16 components, since both µ and ν span 0− 3 independently.

Tµν ′ = Aµ′
Bν ′ = Lν

σL
ν
τT

στ (13)

1We will always assume that vectors are 4-vectors unless explicitly stated to the contrary.
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And,
Tµνλ′ = Aµ′

Bν ′Cλ′ = Lν
σL

ν
τL

λ
ρT

στρ , (14)

and so on.

Fact: If two tensors are equal in one frame, they must be equal in every frame. Why? Because they
both transform the same way.

We have already noted that the time component of the index of a tensor is raised or lowered
by the multiplication by a minus sign. For example, the first component of T 00 is lowered by the
metric by

T 00 → −T 0
0 . (15)

And if we then lower the second component as well, we get

T 00 → T00 . (16)

But because the space components don’t change sign when raised or lowered then for andm = 1, 2, 3,

T 0m → −T0m . (17)

It should come as no surprise then that

AµBν = −A0B0 +A1B1 +A2B2 +A3B3 . (18)

Definition: If Tµν = T νµ, the tensor is said to be symmetric in its indices.

As an example,
Tµν ≡ AµBν +AνBµ (19)

is clearly symmetric.

Definition: If Tµν = −T νµ, the tensor is said to be antisymmetric in its indices.

3 Electrodynamics

Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 B2 B1 0

 . (20)

The following is the Lorentz Force Law:

ma = e[E+ v×B ] , (21)

where e is the electric charge of the particle. Our goal is to come up with a Lagrangian that will
give us a relativistic version of the Lorentz Force Law. Let’s begin with a particle experiencing no
external fields. Then, for starting and ending points 1 and 2, respectively, the action is givne by

A =

∫ 2

1

−mdτ =

∫ 2

1

−m
√
1− ẋ2dt , (22)

where ẋ2 = ẋ12 + ẋ22 + ẋ32.
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Now, we know in advance that we can represent the EM field by a vector potential, written as
Aµ(x, t). Let dxµ represent a differential 4-vector along the particle trajectory. Then, Aµ(x, t)dx

µ

is a scalar, and the Action becomes

Ae =

∫ 2

1

−eAµ(x, t)dx
µ , (23)

On combining these two integrals, we get

A =

∫ 2

1

−m
√
1− ẋ2dt− eAµ(x, t)dx

µ

=

∫ 2

1

[−m
√
1− ẋ2 − eAµ(x, t)ẋ

µ ]dt . (24)

Now it’s time to expand Aµ(x, t)ẋ
µ:

Aµ(x, t)ẋ
µ = A0

dt

dt
+Am(x, t)ẋm = A0 +Am(x, t)ẋm . (25)

With this expansion, (24) becomes

A =

∫ 2

1

[−m
√

1− ẋ2 − e
(
A0(x, t)dt− eAm(x, t)ẋm

)
]dt . (26)

And that’s all we need for the Action. Therefore, the integrand gives us the Lagrangian:

L = −m
√
1− ẋ2 − e

(
A0(x, t)dt− eAm(x, t)ẋm

)
. (27)

So, we’re now ready to construct the Euler-Lagrange equations.

∂L

∂ẋm
= m

ẋm√
1− ẋ2

− eAm(x, t) . (28)

We also need
d

dt

(
∂L

∂ẋm

)
=

d

dt

[
m

mẋm√
1− ẋ2

− eAm(x)
]
, (29)

and
∂L

∂xm
= −e

∂A0

∂xm
− eẋn An

∂xm
. (30)

From these we ge thte Euler-Lagrange equations:

m
d

dt

ẋm√
1− ẋ2

− e
∂Am(x, t)

∂t
− e

∂Am(x, t)

∂xn
ẋn = −e

∂A0

∂xm
− eẋn An

∂xm
. (31)

Now for some more adjustments. We want to introduce here something like m“a”:

m
d

dt

ẋm√
1− ẋ2

= m“a” . (32)

Then,

m“a” = e

(
∂Am(x, t)

∂x0
− ∂A0(x, t)

∂xm

)
ẋ0 + e

(
∂Am

∂xn
− ∂An

∂xm

)
ẋn , (33)
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where the first term on the RHS is the electric field part and the second term on the RHS is the
magnetic field part.

At this point we massage the LHS.

m
d

dt

ẋm√
1− v2

= m

dxm

dt√
1− v2

= m
dxm

dτ
. (34)

Now we let

um =
dxm

dτ
and u0 =

dx0

dτ
. (35)

m
d

dτ

dxm

dτ
= m

d2xm

dτ2
= e

(
∂Am(x, t)

∂x0
− ∂A0(x, t)

∂xm

)
dx0

dτ
+ e

(
∂Am

∂xn
− ∂An

∂xm

)
dxn

dτ
, (36)

This last equation can be condensed to

m
d

dτ2
xm = e

(
∂Am

∂xµ
− ∂Aµ

∂xm

)
dxµ

dτ
. (37)

Now, we already have an equation good for the space components of spacetime. We can claim that
this fact, and the fact that we constructed our Action out of Lorentz-invaraint scalare, means that
we can add in the equation for the time component. Therefore,

m
d

dτ2
xµ = e

(
∂Aµ

∂xν
− ∂Aν

∂xµ

)
dxν

dτ
. (38)

Having thrown in the time component for free, we can write
dP

dt
= F ,

disdK
dt = F · v .

(39)

How to impliment locality?

Action =

∫
d4xL (ϕ, ϕ̇) , (40)

where where ϕ presents the field at the point and ϕ̇ measures the variation in the field at nearby
points.

Thus, we have three principles used throughout the Standard Model and gravitational theories
as guiding:

#1 Lorentz Invariance,

#2 Locality,

#3 Gauge Invariance.

This last principle will be covered in the next lecture.
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