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Abstract

This paper contains my notes on Lecture Eight of Leonard Susskind’s 2012 presentation on
Special Relativity for his Stanford Lecture Series. These notes are meant to aid the viewer
in following Susskind’s presentation, without having to take copious notes. The fault for any
inaccuracies in these notes is strictly mine.

1 Einstein’s Thought Experiment

Figure 1. A charged particle at rest in S′ undergoes an acceleration by an external electric

field. Alternatively, if there is no electric field but there is a magnetic field as shown in

S in which the particle moves at velocity v in the +x direction, it will feel a force with the

exact effect as the electric field alone.

Referring to Fig. 1, if we have a charged particle on the x-axis at rest in an electric field only, it
will experience a force. But if we remove the electric field and replace it with a magnetic field By

in the y-direction, and let the particle move with speed v along the x direction, then it will feel a
force in the same direction as in the previous case.

2 About the Fµν tensor

In this section we wish to analyze the Fµν tensor to see how it relates to the electric and magnetic
fields and how it relates to the Maxwell’s equations, and to the vector potential Aµ. That Fµν is
antisymmetric comes from its definition:

Fµν ≡ ∂Aµ

∂xν
− ∂Aν

∂xµ
. (1)
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So, we write down the tensor Fµν :

Fµν =

t
x
y
z


0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 , (2)

where the first index is the row number and the second the column number. Let’s investigate some
components. For example,

F0n = En = Ȧn − ∂nA0 , (3)

where n goes from 1, 2, 3. This row represent the time-space components. This vector represents
the nonzero components on the first row, and we use x, y, z and 1, 2, 3 interchangeably.

Next, we look at the submatrix Fmn, which are the space-space components.

Fmn : B = ∇×A , (4)

or, in components:

Bx =
∂Az

∂y
− ∂Ay

∂z
, (5)

for an example to get Bx.

3 What about the F µν tensor?

We can go from the Fµν tensor to the Fµν tensor by separately raising each index of the former
tensor. The raising operator is the metric tensor

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (6)

So, with the help of the Einstein summation convention and appropriate indice contraction, we get

Fαβ = ηαµηβµFµν

=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



=


0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 . (7)

4 Back to the Lorentz transformation

We use the metric tensor to transform between upper and lower indices (or vice versa) within a
given reference frame. To transform a tensor between two different reference frames, we use the
Lorentz transformation:1

Lα
β =


γ −vγ 0 0

−vγ γ 0 0
0 0 1 0
0 0 0 1

 , (8)

1This is not the general LT, rather, it transforms along the x, x′ axes.
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where v is the speed of the primed axis with respect to the unprimed axis, and γ = 1/
√

1− v2.

So, let’s perform the transformation on Fµν :

Fµν ′ = Lµ
σL

ν
τF

στ . (9)

To illustrate, we’ll focus on a particular component.

(Ez)′ = F 0z ′ = L0
xL

z
zF

xz = (−vγ)(1)By = −vγBy . (10)

5 Identities of Maxwell’s equations

Let A be a 3-vector. Then ∇×A is called the ‘curl of A’. Let’s look at the x component of this
vector.

(∇×A)x = ∂yAz − ∂zAy . (11)

Reminder: For B a 3-vector,
∇ ·B = ∂xBx + ∂yBy + ∂zBz . (12)

Theorem:
∇ · (∇×A) = 0 . (13)

Proof: Let B = ∇×A, then

∇ · (∇×A) = ∂xBx + ∂yBy + ∂zBz

= ∂x(∇×A)x + ∂y(∇×A)y + ∂z(∇×A)z

= ∂x(∂yAz − ∂zAy) + ∂y(∂zAx − ∂xAz) + ∂z(∂xAy − ∂yAx)

= 0 , (14)

after all the terms cancel in pairs. Hence, we have the immediate corollary that

∇ ·B = ∇ · (∇×A) = 0 . (15)

From (3) we have again
En = Ȧn − ∂nA0 , (16)

which becomes in 3-vector notation:

E =
∂

∂t
A−∇A0 . (17)

Now for our second identity. Let S be a differentiable function of coordinates. Then,

Theorem:
∇× (∇S) = 0 . (18)

Proof: We’ll observe what happens to a typical component, say the x component:

(∇× (∇S))x = ∂y(∇S)z − ∂z(∇S)y

= ∂x∂zS − ∂z∂yS

= 0 , (19)
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where we have assumed that these partial derivatives commute with each other.
On taking the curl of (17), we have that

∇×E = ∇× ∂

∂t
A−∇× (∇A0)

=
∂

∂t
∇×A− 0

=
∂

∂t
B . (20)

6 Maxwell’s two equations from an action principle

3) ∇ ·E = ρ, where ρ is the charge density.

4) ∇×B− ∂E

∂t
= j, where j is the electric current density.

Figure 2. The amount of charge passing through a unit of physical area ∆A = ∆y∆z
per unit time is jx = ∆Q/∆A∆t.

With reference to the figure above, the density of charge ρ in a volume ∆V is given as

ρ =
∆Q

∆V
. (21)

Given a small cubic volume of space, the change in charge in the cube due to the flow in the x
direction in or out is the difference of the jx values on opposite faces:

δjx = jx(x+ δx, y, z)− jx(x, y, z) =
∂jx
∂x

δx . (22)

Using similar results for jy and jz, we get the continuity equation of charge conservation:

ρ̇ = −∇ · j or ρ̇+∇ · j = 0 . (23)

Proof: Since ∇ ·E = ρ, we can write

∂

∂t
∇ ·E = ∇ · ∂E

∂t
=

∂ρ

∂t
. (24)

Now, by taking the divergence of ∇×B− ∂E

∂t
= j, we can write

−∂ρ

∂t
= ∇ · j . (25)
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So,
∂ρ

∂t
+∇ · j = 0 . (26)

Advancing now to the 4-vector notation, we have the useful 4-vector related to ρ and j as

jµ → (ρ, jn) where n = 1, 2, 3 and µ = 0, 1, 2, 3 , (27)

and with this notation (23) and (26) become

∂jµ

∂xµ
= jµ,µ = 0 . (28)

7 Bianchi Identity

We have a special equation to consider now, called the Bianchi Identity, given by

∂σFντ + ∂νFτσ + ∂τ Fσν = 0 . (29)

Let’s try the combination of indice values given by, σ = x , ν = y , τ = z:

∂xFyτ + ∂yFzx + ∂zFxy = 0 . (30)

And, in terms of E and B components, we get

∂xBx + ∂yBy + ∂zBz = 0 . (31)

Or, more compactly,
∇ ·B = 0 . (32)

But what if we include a time component in the mix? σ = y , ν = x , τ = t:

∂yFxt + ∂xFty + ∂tFyx = 0 . (33)

And, in terms of E and B components, we get

∂y(−Ex) + ∂x(Ey) + ∂t(−Bz) = 0 . (34)

Or, more compactly,
(∇×E)z = (∂tB)z . (35)

A trivial proof to (29) is given by

∂σ

(
∂Aν

∂xτ
− ∂Aτ

∂xν

)
+ ∂ν

(
∂Aτ

∂xσ
− ∂Aσ

∂xτ

)
+ ∂τ

(
∂Aσ

∂xν
− ∂Aν

∂xσ

)
= 0 , (36)

by cancellations.

5


