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Abstract

This paper contains my notes on Lecture Nine of Leonard Susskind’s 2012 presentation on
Special Relativity for his Stanford Lecture Series. These notes are meant to aid the viewer
in following Susskind’s presentation, without having to take copious notes. The fault for any
inaccuracies in these notes is strictly mine.

1 Setting up for plane-wave solutions

First, we present three equations of the EM field:

∇×A = B (1a)

∇ ·B = 0 (1b)

∂B

∂t
= ∇×E , (1c)

Now, to investigate a plane-wave solution of these equations, we need to insist there be neither
charges or currents in the vacinity. Hence

∇ ·E = 0 , (2a)

∂E

∂t
= −∇×B . (2b)

Let’s also remind ourselves at this point of the relationsghip between the wavelenght λ and the
wavenumber k as

λ =
2π

k
. (3)

We assume the basic ansatz solutions to be

Ex(z, t) = ϵx(kz − ωt) , Bx(z, t) = βx(kz − ωt) , (4a)

Ey(z, t) = ϵy(kz − ωt) , By(z, t) = βy(kz − ωt) , (4b)

Ez(z, t) = ϵz(kz − ωt) , Bz(z, t) = βz(kz − ωt) , (4c)

where the ϵ’s and β’s are just constants. So, we need to solve for 3 ϵ’s and 3 β’s. Let’s solicit (2a)
for some assistance.

∂xEx + ∂yEy + ∂zEz = 0 . (5)

But Ex is not a function of x and Ey is not a function of y, hence we conclude that

∂zEz = 0 , (6)
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which forces us to conclude that ϵz = 0. And from this we conclude that Ez = 0
Similarly, ∇·B = 0, forcing the result Bz = 0. We can set Ey = 0 by a suitable rotation of axes.
From (2b), we get

∂Ex

∂t
= −(∇×B)x

= −(∂yBz − ∂zBy)

= ∂zBy

̸= 0 (7)

since Ex ̸= 0.
−ϵxω cos (kz − ωt) = βxk cos (kz − ωt) . (8)

Therefore,

βx = −ϵx
ω

k
. (9)

For the y component:

∂Ey

∂t
= −(∇×B)y

= −(∂xBz − ∂zBx) . (10)

But since Ey = 0, then
−(∂xBz − ∂zBx) = 0 . (11)

But Bz = 0, so
∂zBx = 0 . (12)

Thus, we are forced to set βx = 0.
As the figure below, we choose the direction of propogation of the wave to be along the positive

z axis.

The E-field is in the x, z plane, and the B-field is in the y, z plane. The E-field

is perpendicular to the B-field. Together, they are transverse to their motions

along the z axis.

When
E ·B = 0 (13)

we say that E and B are transverse. Now, we have that

β = −ϵ
ω

k
(14)

2



and also that
ϵ = −β

ω

k
. (15)

Therefore,

ω/k = 1,

ω = k,

and ϵ = β.

Hence,

Ex = ϵx sin k(z − t) , (16)

By = βy sin k(z − t) . (17)

∇ ·E = ρ = j0, where ρ is the charge density.

∇×B− ∂E

∂t
= j, where j is the electric current density.

∂Fµν

∂xµ
= jν . (18)

2 Back to the Lagrangians

We extremize the Action A of an appropriate Lagrangian L or Lagrangian density L , when dealing
with fields (possibly many of them) over a region.

A =

∫
d4xL

(
ϕ,

∂ϕ

∂xµ

)
. (19)

Making the Lagrangian density a function of ∂ϕ/∂xµ enforces locality on the system. We can, also
adopt a convenient notation.

∂ϕ

∂xµ
= ∂µϕ = ϕ,µ . (20)

Next, we need ensure that the Lagrangian is a Lorentz-invariant scalar, like

L = − 1
2∂µϕ∂µϕ− V (ϕ) . (21)

The equations of motion are derived from the Euler-Lagrange equations:

∂

∂xµ

∂L

∂ϕ,µ
=

∂L

∂ϕ
, (22)

yielding
∂2ϕ

∂t2
− ∂2ϕ

∂x2
− ∂2ϕ

∂y2
− ∂2ϕ

∂z2
= −∂V

∂ϕ
. (23)

We also need gauge invariance. (We will set jµ = 0: no charges.) So, we choose fields such Fµν

and whatever scalar you can construct with it. For gauge invariance, we need scalar forms that are
invariant under the following transformation

Aµ → A′
µ = Aµ +

∂S

∂xµ
, (24)
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where S is a scalar field. Under such a transformation, the scalar AµA
µ would not transform to

A′
µA

µ′
.

We need to construct our scalars out of Fµν somehow. What if we took the trace1 of F ν
µ = Fµ

µ ?
If we did this, the result is zero because every entry on the diagonal is zero.

However, FµνF
µν is an example of a useable scalar:

FµνF
µν = −2E2 + 2B2 . (25)

However, by convention, we choose the form instead

− 1
4FµνF

µν = 1
2 (E

2 −B2) . (26)

Let’s adopt another convenient notation.

Aµ,ν ≡ ∂Aµ

∂xν
. (27)

Then,2

Fµν = ∂µAν − ∂νAµ = Aν,µ −Aµ,ν . (28)

So, a possible Lagrangian is

∂L

∂Ax,y
= − 1

4 (Aν,µ −Aν,µ)(A
ν,µ −Aν,µ) . (29)

We’re now at the point of having to calculate a term 0f ∂L /∂Aµν . Let’s take µ = x and ν = y:

L
∣∣∣µ=x
ν=y

= − 1
2

(∂Ax

∂y
− ∂Ay

∂x

)2

= − 1
2

(
A2

x,y − 2Ax,yAy,x +A2
y,x

)
. (30)

But for our purposes, Ax,y ̸= Ay,x in general. Therefore,

∂L

∂Ax,y
= −Ax,y +Ay,x = −Fxy = −F xy . (31)

Generalizing,
∂L

∂Aµ,ν
= −Fµν . (32)

On differentiating by ∂/∂xν , we get

∂

∂xν

∂L

∂Aµ,ν
= −∂Fµν

∂xν
. (33)

Now,
∂

∂xν

∂L

∂Aµ,ν
=

∂L

∂Aµ
. (34)

But L is not a function of Aµ, therefore,

∂L

∂Aµ
= 0 , (35)

1The trace of a square matrix is the sum of all its diagonal elements.
2I’m using the definition of Fµν from Wikipedia. Anyway, since we will in essense be taking a ‘square’ in the F

tensor to form the Lagrangian, it won’t matter.

4



and therefore,
∂

∂xν

∂L

∂Aµ,ν
= 0 . (36)

And, finally, we get the important result that

∂Fµν

∂xν
= 0 . (37)

3 What if we have charge density and charge current?

We begin with the action

A = −
∫

d4xjµ(x)Aµ(x) . (38)

After doing a gauge transformation, with the assumption that jµ → 0 at infinity, we get

A ′ = −
∫

d4xjµ(x)Aµ −
∫

d4xjµ(x)
∂S

∂xµ
. (39)

If we can sahow that the second term in the last equation is zero, then we will have shown that the
action A is invariant under a gauge transformation. To that end we let

Ag ≡ −
∫

d4xjµ(x)
∂S

∂xµ
. (40)

and seek to show that Ag = 0. Let’s look closer at the integrand, namely

j0
∂S

∂x0
+ j1

∂S

∂x1
+ j2

∂S

∂x2
+ j3

∂S

∂x3
. (41)

Furthermore, let’s examine one of these terms to see how it integrates. So, let Ix be defined as

Ix =

∫
jx

∂S

∂x
dxdydzdt . (42)

Now,

∂x(j
xS) = (∂xj

x)S + jx
∂S

∂x
= (∂xj

x)S + jx∂xS . (43)

Similarly,

∂y(j
yS) = (∂yj

y)S + jy
∂S

∂y
= (∂yj

y)S + jy∂yS , (44)

and

∂z(j
zS) = (∂zj

z)S + jz
∂S

∂z
= (∂zj

z)S + jz∂zS . (45)

Adding these up gives

∂x(j
xS) + ∂y(j

yS) + ∂z(j
zS) = (∇ · j)S + j · ∇S . (46)

Similarly,

∂t(j
tS) = (∂tj

t)S + jt
∂S

∂t
= (∂tj

t)S + jt∂tS . (47)

On subtracting (47) from (46), we have that

−∂t(j
tS) + ∂x(j

xS) + ∂y(j
yS) + ∂z(j

zS) =����:0
(∂µj

µ)S + jµ∂µS

thus, ∂µ(j
µS) = jµ∂µS . (48)

5



Now, substituting this last result into (40), we get

Ag = −
∫

d4x∂µ(j
µS) = −jµS

∣∣
spacetime
at infinity

= 0 , (49)

because we have assumed that jµ(x) goes to zero on the infinite boundaries. Thus we have shown
that the term jµAµ in the Lagrangian is gauge invariant.

So, we set
L = − 1

4FµνF
µν − jµAµ with ∂µj

µ = 0 , (50)

and
∂Fµν

∂xν
= jµ . (51)

And, finally, a consistency check.

∂

∂xµ

∂Fµν

∂xν
=

∂2

∂xµ∂xν
Fµν . (52)

However,
∂2

∂xµ∂xν
. (53)

is symmetric in µ and ν, whereas, Fµν is antisymmetric in them; hence, the summation on them
results in zero. From this, we get back ∂µj

µ = 0.
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