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Abstract

This paper contains my notes on Lecture Six of Leonard Susskind’s 2011 presentation on String
Theory and M-Theory for his Stanford Lecture Series. These read-along notes are meant to
aid the viewer in following Susskind’s presentation, without having to take copious notes. The
fault for all errors in these notes belong solely to me.

1 Scattering Experiments

We begin by setting c = ℏ = 1.

Scattering experiments are central to particle physics because they are at the heart of what
physicists can do to prove the predictions of their theories.

Figure 1. These particles have 4-momentum.

We analyze the interaction through conservation of 4-momenta.

kµ = (E, px, py, pz) (µ = 0, 1, 2, 3) , (1)

and equations to obey
E2 = p2 +m2 or E2 − p2 = m2 . (2)

Or even
p2 − E2 = −m2 or k2 − k20 = −m2 . (3)

Or more succinctly
pµp

µ = k2 = −m2 . (4)

We’re taking k2 to be the same for every particle. The 4-momentum equation:

k1 + k2 = q3 + q4 . (5)

Let q3 → −k3 and q4 → −k4.
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Figure 2. Two particles in; two particles out.

Hence,
k1 + k2 + k3 + k4 = 0 , (6)

subject to the constraint k2i = −m2 for each i.

Question: What are the amplitudes for this collision and results? A(k1, k2, k3, k4).
Now, we are allowed to move to the center of mass frame in which the CM is at rest. We can

also orient the axes so that our motion is along the x-axis. In the CMF the only thing to analyze
is the total energy. For simplicity, assume all the particles are of the same kind.

Figure 3. Collision as seen in the CMF: all particles are the same.

We are down to two independent variables. We should be able to characterize this simple
scattering with only two relativistically invariant parameters.

Figure 4. A further simplification. All particles have the same energy.

How to produce an invariant?

(k1 + k2)
2 ≡ (k1 + k2)

2 − (k01 + k02)
2 , (7)

where (k1 +k2)
2 is zero in the CM frame and (k01 + k02)

2 = (2k0)
2 is the CM energy. Let S be the

CM energy.
S = (k1 + k2)

2 = (k1 + k2)
2 = E2

CM , (8)
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(k1 + k3)
2 = (k1 + k3)

2 − (k01 + k03)
2 = (k1 + k3)

2 . (9)

But k01 + k03 = 0 because they have opposite signs.

s = E2
CM , (10)

Now,
t ≡ (E2

CM −m2)(1− cos θ) , (11)

−t = (k1 + k3)
2 , (12)

Figure 5. A momentum transfer from particle 1 to 3.

(k1 + k3)
2 = (k1 − q3)

2 (momentum transfer) . (13)

Then

(k1 + k3)
2 = 2(E2 −m2)(1− cos θ) . (14)

So
−u = (k1 + k4)

2 , (15)

which is not independent of the other two.

The Madelstam Variables (from Wikipedia):

s = (p1 + p2)
2c2 = (p3 + p4)

2c2 , (16)

t = (p1 − p3)
2c2 = (p4 − p2)

2c2 , (17)

u = (p1 − p4)
2c2 = (p3 − p2)

2c2 , (18)

Make conversion of variables as needed.

2 Feynman Diagrams

Figure 6. An s-channel process. g is the coupling constant.
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The characteristic structure of the scattering amplitude is

g2
1

s−M2
, (19)

Alternatively, we can write down a t-channel process with amplitude g2
1

t−m2
:

Figure 7. A t-channel process. g is the coupling constant.

Here, all scattering angles are equally probable. The Feynman diagram explanation isd the
connection pipe between he incoming and outgoing particles is forgetful.

On combining the relevant Feynman diagrams, we get

g2
1

s−m2
+ g2

1

s−m2
, (20)

In the 1960s, the following formulation arose from trial and error: Gabriele Veneziano

Amplitude:

g2
Γ(−s)Γ(−t)
Γ(−s− t)

→ s . (21)

Figure 8a. An s-channel process.

Figure 8b. A t-channel process.
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Both figures above (Fig. 8a and 8b) represent the same math.

The theory that arose that best explained (21) is called string theory.

Figure 9. A The string sweeps out a world sheet.

The equation of motion of x are wave motion, describing waves moving up and down the string.

∂2x

∂τ2
− ∂2x

∂σ2
= 0 . (22)

So, we re-imaging the incoming particles as open strings. The collision of such particles is modeled
by the strings meeting at end points as in the figure below.

Figure 10. The strings meet at conjoining points to form a single new string.

We will overload τ this time to mean the time it takes between the formation of a single string
and its breakup.

Figure 11. τ is the time between formation and breakupp..

To analyze this process quantum mechanically, we need an intial state: this will be the collec-
tion of mass points used to approximate the string, x1, . . . , xN . Then we form the wave function
ψ(x1, . . . , xN ) at the start. So, ψ has momentum k.

ψ(x1, . . . , xN ) = e
ik1

(x1 + · · ·+ xN
N

)
ψ0(x1, . . . , xN ) , (23)

where ψ0(x1, . . . , xN ) is the ground state. The CM position is
x1 + · · ·+ xN

N
. Next, we need the

5



wavefunction for the second particle:

ψ(xN+1, . . . , x2N ) = e
ik2

(xN+1 + · · ·+ x2N
N

)
ψ0(xN+1, . . . , x2N ) , (24)

and because N >> 1, we won’t bother to change it in the denominator. However, to say that the
two strings merge is to set xN+1 of the second string equal to xN of the first string. Thus, the last
equation becomes

ψ(xN+1, . . . , x2N ) = e
ik2

(xN + · · ·+ x2N
N

)
ψ0(xN+1, . . . , x2N ) . (25)

Next, we evolve this new state by the Hamiltonian, and multiply by eiHτ , where H is the
Hamiltonian for the 2N points of the combined system. The last step is to project the evolved
system onto two new particles of momenta k3 and k4. Post separation we get

I =

∫ ∞

0

dτ eτ(s+1)(1− e−τ )−t−1e−τ , (26)

where eτ(s+1) is the CM energy and t is the momentum change.
Lastly, we make the change of variable e−τ → z:

I =

∫ 0

1

dzz−(s+1)(1− z)−t−1 . (27)

If we interchange z and z − 1, we see that s and t are symmetric. This implies that the s-channel
is convertible into the t-channel and vice versa.
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